Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Mechanical Response of Composite Reinforced Aluminum Foam Sandwich Systems for Automotive Structures

2007-04-16
2007-01-1722
This paper presents the design and manufacture a sandwich structure bumper beam that could withstand at least the same load required to have plastic deformation in a 2002 Jeep Wrangler bumper beam at a lower weight. The dimensions from a bumper beam were scaled down in order to match the limiting length of the sandwich structure specimens. Theoretical optimization calculations were conducted in order to find the optimal dimensions and face thicknesses for the hybrid structures. Sandwich panels were based on Glass Fiber Reinforced Polypropylene (Twintex) and an Aluminum foam core (Alporas). Three point bending tests were performed on the sandwich structures. The resulting failure modes were revealed and found to be in agreement with those offered by the analytical predictions.
Technical Paper

Characteristics of High-Pressure Spray and Exhaust Emissions in a Single- Cylinder Di Diesel Engine

2000-06-12
2000-05-0333
Regulations on exhaust emissions from light- and heavy-duty diesel engines have generated interest in high-pressure fuel injection systems. It has been recognized that high-pressure injection systems produce fuel sprays that may be more conductive to reducing exhaust emissions in direct-injection diesel engines. However, for such a system to be effective it must be matched carefully with the engine design and its operating parameters. A common-rail type of fuel injection system was investigated in the present study. The injection system utilizes an intensifier to generate injection pressures as high as 160 MPa. The fuel spray characteristics were evaluated on a test bench in a chamber containing pressurized nitrogen gas. The injection system was then incorporated in a single-cylinder diesel engine. The injection system parameters were adjusted to match engine specifications and its operating parameters.
Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

2004-01-16
2004-28-0045
Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

Combustion Variability in Natural Gas Fueled Engines

2003-05-19
2003-01-1935
A study was conducted to investigate combustion variability and exhaust emissions from high-speed, natural gas fueled engines. Two types of fuel systems were used in the investigation: a mixer and a port fuel injection. The overall engine performances were not much different at stoichiometric fuel-air ratio. But as the equivalence ratio was reduced the engine with the mixer produced higher levels of hydrocarbons and larger coefficient of variations in imep. The same engine exhibited longer flame development angle and rapid burn duration in comparison to the fuel injected engine. The differences in burn durations increased as the equivalence ratio decreased and the mixer system produced larger variations in their values at these operating points. The investigation showed the performance of the engine was better with natural gas injection system than with the mixer, particularly at lean equivalence ratios.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

2016-04-05
2016-01-1199
This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Technical Paper

A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

2017-03-28
2017-01-1697
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Technical Paper

Secure and Privacy-Preserving Data Collection Mechanisms for Connected Vehicles

2017-03-28
2017-01-1660
Nowadays, the automotive industry is experiencing the advent of unprecedented applications with connected devices, such as identifying safe users for insurance companies or assessing vehicle health. To enable such applications, driving behavior data are collected from vehicles and provided to third parties (e.g., insurance firms, car sharing businesses, healthcare providers). In the new wave of IoT (Internet of Things), driving statistics and users’ data generated from wearable devices can be exploited to better assess driving behaviors and construct driver models. We propose a framework for securely collecting data from multiple sources (e.g., vehicles and brought-in devices) and integrating them in the cloud to enable next-generation services with guaranteed user privacy protection.
Technical Paper

Influence of Suspension Properties on Vehicle Roll Stability

2006-02-14
2006-01-1950
Vehicle roll dynamics is strongly influenced by suspension properties such as roll center height, roll steer and roll camber. In this paper, the effects of suspension properties on vehicle roll response has been investigated using a multi-body vehicle dynamics program. A full vehicle model equipped with front MacPherson and rear multilink suspensions has been used for the study. Roll dynamics of the vehicle were evaluated by performing fixed timing fishhook maneuver in the simulation. Variations of vehicle roll response due to changes in the suspension properties were assessed by quantitatively analyzing the vehicle response through simulation. Critical suspension design parameters for vehicle roll dynamics were identified and adjusted to improve roll stability of the vehicle model with passive suspension. Design of Experiments has been used for identifying critical hardpoints affecting the suspension parameters and optimization techniques were employed for parameter optimization.
Technical Paper

Lean Burn Natural Gas Fueled S.I.Engine and Exhaust Emissions

1995-10-01
952499
An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in the engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads.
Technical Paper

A Fitting Algorithm for Determination of Minimum Zone Form Tolerances

1996-05-01
961642
In this paper, a new algorithm, named Nonlinear Optimization Method (NOM) has been mathematically and computationally developed for several geometric elements. The initial condition of the NOM is obtained by LSM, then the minimum zone is optimized in accordance with tolerancing principles in ANSI Y14.5.1M. The results are verified to be the Minimum Zone Evaluation (MZE) for the inspected geometric features. The algorithm, together with its computational realization programs, are proved to be considerably reliable and robust for practical applications.
Technical Paper

Parametric Approach for Development of an Automotive Bucket Seat Frame

2006-04-03
2006-01-0366
This paper presents a design and development approach for automotive bucket seat frame using a parametric modeling and a finite element analysis methodology. This approach is expected to help build a lightweight seat structure quickly and efficiently. This approach is general, and it can be applied in designing and developing any mechanical structural component. The design process involves, first parametric modeling of the front bucket seat frame using Pro E. This CAD model was then optimized using optimization software called Optistruct, for two cases of load case and boundary condition. The optimized design was then tested for FMVSS seat requirements using LS-DYNA. The dynamic nature of the design approach helps in changing design parameters during different stages of the design process, until the seat structure satisfies the design criteria and the strength requirements. The construction and testing of this design and the design model are still under progress.
Technical Paper

Analysis and Optimization of Seat and Suspension Parameters for Occupant Ride Comfort in a Passenger Vehicle

2018-04-03
2018-01-1404
This study presents a methodology for comparative analysis of seat and suspension parameters on a system level to achieve minimum occupant head displacement and acceleration, thereby improving occupant ride comfort. A lumped-parameter full-vehicle ride model with seat structures, seat cushions and five occupants has been used. Two different vehicle masses are considered. A low amplitude pulse signal is provided as the road disturbance input. The peak vertical displacement and acceleration of the occupant’s head due to the road disturbance are determined and used as measures of ride comfort. Using a design of experiments approach, the most critical seat cushion, seat structure and suspension parameters and their interactions affecting the occupant head displacement and acceleration are determined. An optimum combination of parameters to achieve minimum peak vertical displacement and acceleration of the occupant’s head is identified using a response surface methodology.
Technical Paper

Relationship Between the Corner Depth and Quality of Mixing in a Square Combustion Chamber Di Diesel Engine

2000-06-12
2000-05-0041
This paper provides an insight into the design of a compound combustion chamber, with square and circular cavities, for use in a direct-injection diesel engine. Automotive diesel engines using square combustion chamber design have shown improvement in oxides of nitrogen and particulate exhaust emissions. In spite of this, neither the quality of mixture formation in such chambers nor the relationship between the engine performance and combustion chamber designs have been adequately addressed. Compound combustion chambers have potential to combine attributes of square and circular chambers to provide improved engine performance. An experimental study, based on liquid injection technique (LIT), was conducted to evaluate mixture formation in compound combustion chambers of different designs. These chambers have square geometry of depth "h" at the top and a curricular cavity at the bottom, with the total chamber depth being "H."
X