Refine Your Search

Topic

Author

Search Results

Journal Article

Tire Traction of Commercial Vehicles on Icy Roads

2014-09-30
2014-01-2292
Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations.
Journal Article

Experimental Assessments of Parallel Hybrid Medium-Duty Truck

2014-05-20
2014-01-9021
Fuel consumption reduction on medium-duty tactical truck has and continues to be a significant initiative for the U.S. Army. The Crankshaft-Integrated-Starter-Generator (C-ISG) is one of the parallel hybrid propulsions to improve the fuel economy. The C-ISG configuration is attractive because one electric machine can be used to propel the vehicle, to start the engine, and to be function as a generator. The C-ISG has been implemented in one M1083A1 5-ton tactical cargo truck. This paper presents the experimental assessments of the C-ISG hybrid truck characteristics. The experimental assessments include all electric range for on- and off-road mission cycles and fuel consumption for the high voltage battery charging. Stationary tests related to the charging profile of the battery pack and the silent watch time duration is also conducted.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Technical Paper

Lithium-Ion Battery Cell Modeling with Experiments for Battery Pack Design

2020-04-14
2020-01-1185
Lithium-ion polymer battery has been widely used for vehicle onboard electric energy storage ranging from 12V SLI (Starting, Lighting, and Ignition), 48V mild hybrid electric, to 300V battery electric vehicle. Formulation on cell parameters acquired from minimum numbers of experiments, the modeling and simulation could be an effective approach in predicting battery performance, thermal effectiveness, and degradation. This paper describes the modeling, simulation, and validation of Lithium-Nickel-Manganese-Cobalt-Oxide (LiNiMnCoO2) based cell with 3.6V nominal voltage and 20Ah capacity. Constant current 20A, 40A, 60A, and 80A discharge tests are conducted in the computer-controlled cycler and temperature chamber. Discharging voltage curves and cell surface temperature distributions are recorded in each discharging test. A three-dimensional cell model is constructed in the COMSOL multi-physics platform based on the cell parameters.
Technical Paper

Step by Step Conversion of ICE Motorcycle to a BEV Configuration

2020-04-14
2020-01-1436
With the mass movement toward electrification and renewable technologies, the scope of innovation of electrification has gone beyond the automotive industry into areas such as electric motorcycle applications. This paper provides a discussion of the methodology and complexities of converting an internal combustion motorcycle to an electric motorcycle. In developing this methodology, performance goals including, speed limits, range, weight, charge times, as well as riding styles will be examined and discussed. Based on the goals of this paper, parts capable of reaching the performance targets are selected accordingly. Documentation of the build process will be presented along with the constraints, pitfalls, and difficulties associated with the process of the project. The step-by-step process that is developed can be used as a guideline for future build and should be used as necessary.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

Intelligent Auxiliary Battery Control - A Connected Approach

2021-09-21
2021-01-1248
As vehicles are getting electrified and more intelligent, the energy consumption of the auxiliary system increases rapidly. The auxiliary battery acts as the backbone of the system to support the proper operation of the vehicle. It is important to ensure the auxiliary battery has enough energy to meet the basic loads regardless the vehicle is in park or running. However, the existing methods only focus on auxiliary energy management when the vehicle is in a dynamic event. To fulfill the gap, we propose an intelligent strategy that detects the low state of charge (SOC) condition, temporarily turns down the auxiliary loads based on their priorities and charges the auxiliary battery at the maximum efficiency of the auxiliary power unit. In addition, the proposed strategy allows the vehicle to get the park duration update and make intelligent decisions on charging the auxiliary battery.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

Vehicle System Simulator: Development and Validation

2011-09-13
2011-01-2166
A graphical user interface (GUI) toolbox called Vehicle System Simulator (VSS) is developed in MATLAB to ease the use of this vehicle model and hopefully encourage its widespread application in the future. This toolbox uses the inherent MATLAB discrete-time solvers and is mainly based on Level-2 s-function design. This paper describes its built-in vehicle dynamics model based on multibody dynamics approach and nonlinear tire models, and traction/braking control systems including Cruise Control and Differential Braking systems. The built-in dynamics model is validated against CarSim 8 and the simulation results prove its accuracy. This paper illustrates the application of this new MATLAB toolbox called Vehicle System Simulator and discusses its development process, limitations, and future improvements.
Journal Article

Anthropomimetic Traction Control: Quarter Car Model

2011-09-13
2011-01-2178
Human expert drivers have the unique ability to combine correlated sensory inputs with repetitive learning to build complex perceptive models of the vehicle dynamics as well as certain key aspects of the tire-ground interface. This ability offers significant advantages for navigating a vehicle through the spatial and temporal uncertainties in a given environment. Conventional traction control algorithms utilize measurements of wheel slip to help insure that the wheels do not enter into an excessive slip condition such as burnout. This approach sacrifices peak performance to ensure that the slip limits are generic enough suck that burnout is avoided on a variety of surfaces: dry pavement, wet pavement, snow, gravel, etc. In this paper, a novel approach to traction control is developed using an anthropomimetic control synthesis strategy.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Journal Article

Development of the Enhanced Peripheral Detection Task: A Surrogate Test for Driver Distraction

2012-04-16
2012-01-0965
Up to now, there is no standard methodology that addresses how driver distraction is affected by perceptual demand and working memory demand - aside from visual allocation. In 2009, the Peripheral Detection Task (PDT) became a NHTSA recommended measure for driver distraction [1]. Then the PDT task was renamed as the Detection Response Task (DRT) because the International Standards Organization (ISO) has identified this task as a potential method for assessing selective attention in detection of visual, auditory, tactile and haptic events while driving. The DRT is also under consideration for adoption as an ISO standard surrogate test for driver performance for new telematics designs. The Wayne State University (WSU) driver imaging group [2, 3] improved the PDT and created the Enhanced Peripheral Detection Task I (EPDT-I) [4]. The EPDT-I is composed of a simple visual event detection task and a video of a real-world driving scene.
Journal Article

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-04-16
2012-01-1006
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Journal Article

Iterative Learning Control for a Fully Flexible Valve Actuation in a Test Cell

2012-04-16
2012-01-0162
An iterative learning control (ILC) algorithm has been developed for a test cell electro-hydraulic, fully flexible valve actuation system to track valve lift profile under steady-state and transient operation. A dynamic model of the plant was obtained from experimental data to design and verify the ILC algorithm. The ILC is implemented in a prototype controller. The learned control input for two different lift profiles can be used for engine transient tests. Simulation and bench test are conducted to verify the effectiveness and robustness of this approach. The simple structure of the ILC in implementation and low cost in computation are other crucial factors to recommend the ILC. It does not totally depend on the system model during the design procedure. Therefore, it has relatively higher robustness to perturbation and modeling errors than other control methods for repetitive tasks.
Technical Paper

Effect of Load and Other Parameters on Instantaneous Friction Torque in Reciprocating Engines

1991-02-01
910752
The effect of many operating parameters on the instantaneous frictional (IFT) torque was determined experimentally in a single cylinder diesel engine. The method used was the (P - ω)method developed earlier at Wayne State University. The operating parameters were load, lubricating oil grade, oil, temperature and engine speed. Also IFT was determined under simulated motoring conditions, commonly used in engine friction measurements. The results showed that the motoring frictional torque does not represent that under firing conditions even under no load. The error reached 31.4% at full load. The integrated frictional torque over the whole cycle and the average frictional torque were determined. A comparison of the average frictional torque under load was compared with the average motoring torque.
Technical Paper

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

2020-04-14
2020-01-1304
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks.
Technical Paper

A Simplified Battery Model for Hybrid Vehicle Technology Assessment

2007-04-16
2007-01-0301
The objective of this work is to provide a relatively simple battery energy storage and loss model that can be used for technology screening and design/sizing studies of hybrid electric vehicle powertrains. The model dynamic input requires only power demand from the battery terminals (either charging or discharging), and outputs internal battery losses, state-of-charge (SOC), and pack temperature. Measured data from a vehicle validates the model, which achieves reasonable accuracy for current levels up to 100 amps for the size battery tested. At higher current levels, the model tends to report a higher current than what is needed to create the same power level shown through the measured data. Therefore, this battery model is suitable for evaluating hybrid vehicle technology and energy use for part load drive cycles.
X