Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Effects of Bead Surface Preparation on Friction in the Drawbead Test

1991-02-01
910511
The effects of bead surface roughness on friction, die pickup, and sheet surface damage in the drawbead test were investigated. Beads of HRC 58 hardness were prepared from centerless-ground rod by circumferential honing to 0.05 μm roughness, followed by finishing with 100, 400, or 600 grit SiC paper in the axial direction. Paraffinic base oils with viscosities of 4.5, 30, and 285 mm2/s were used neat and in conjunction with stearic acid. The effects of bead roughness depended on the nature of metal transfer, especially its distribution and firmness of attachment. The presence of a boundary additive increased, decreased, or had no effect on friction depending on the particular coating and bead finish.
Technical Paper

Evaluation of Small Scale Formability Results on Large Scale Parts: Aluminum Alloy Tailor Welded Blanks

2001-03-05
2001-01-0823
This paper investigates the application of standard formability testing results for aluminum alloy tailor welded blanks (TWB) to full size stampings. The limit strains obtained from formability testing are compared to measured strains in a larger scale part. The measured strains in the full scale part are also compared to predictions from finite element simulation.
Technical Paper

The Effect of Nitrogen on the Mechanical Properties of an SAE 1045 Steel

1992-02-01
920667
A cold worked and induction hardened SAE1045 steel component exhibited excessive distortion after cold working and straightening, as well as cracking during straightening after induction hardening. Since the problems occurred only in certain heats of electric furnace (EF) steel, in which nitrogen content can vary widely and in some cases be quite high, and never occurred for basic oxygen furnace (BOF) steel for which nitrogen contents are uniformly low it was suspected that the source of the problem was low temperature nitrogen strain aging in heats of EF steel with a high nitrogen content. The measured distortion and mechanical properties at various stages in the fabrication process showed that while nitrogen content had no significant effect on the hot rolled steel the component distortion and strength after cold working and after induction hardening increased with increasing nitrogen content.
Technical Paper

Fatigue Evaluation of a Nodular Cast Iron Component

1992-02-01
920669
A ferritic-pearlitic nodular iron automobile suspension knuckle was fatigue tested in the laboratory using a constant amplitude load level that simulated a severe service condition. It was found that cracks always initiated from surface casting defects and that the fatigue life could be extended significantly by machining away the as-cast surface in the fatigue sensitive locations. Both local strain and fracture mechanics approaches were used successfully to predict the fatigue life of the component.
Technical Paper

Transient Tribological Phenomena in Drawbead Simulation

1992-02-01
920634
Details of the development of metal transfer and friction were studied by drawing cold-rolled bare, galvannealed, electrogalvanized, and hot-dip galvanized strips with a mineral-oil lubricant of 30 cSt viscosity at 40 C, over a total distance of 2500 mm by three methods. An initial high friction peak was associated with metal transfer to the beads and was largest with pure zinc and smallest with Fe-Zn coatings. Insertion of a new strip disturbed the coating and led to the development of secondary peaks. Long-term trends were governed by the stability of the coating. Stearic acid added to mineral oil delayed stabilization of the coating and increased contact area and thus friction with pure zinc surfaces. The usual practice of reporting average friction values can hide valuable information on lubrication mechanisms and metal transfer.
Technical Paper

Effect of Bead Finish Orientation on Friction and Galling in the Drawbead Test

1992-02-01
920632
This study was undertaken to examine the role of tool finish orientation on the drawing of zinc-coated steel sheets. Beads of average roughnesses of 0.1 μm and 0.2 μm, finished parallel to and perpendicular to sliding, were used in the drawbead test. Lubrication was provided by unblended base oils of 4.5, 30, and 285 mm2/s @ 40°C, used neat and with a boundary additive, 1% stearic acid. Three types of coated sheet (galvannealed, electrogalvanized, and hot-dip galvanized) were compared to bare AKDQ steel sheet. Results show that lubricant viscosity had the greatest effect on friction, while bead finish orientation and coating type influenced the nature of metal transfer and the galling of the strip. Mixed-film lubrication dominated with the medium and heavy lubricants, here contact area and friction were reduced with increasing lubricant viscosity.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Weldability Improvement Using Coated Electrodes for RSW of HDG Steel

2006-04-03
2006-01-0092
The increased use of zinc coatings on steels has led to a decrease in their weldability. Weld current and time need to be increased in order to achieve sound welds on these materials compared to uncoated steels, and electrode tip life suffers greatly due to rapid alloying and degradation. In this work, typical uncoated Class II electrodes were tested along with a TiC metal matrix composite (MMC) coated electrode. Tests were conducted to study the weldability and process of nugget formation for both electrodes on HDG (hot dipped galvanized) HSLA (high strength low alloys) steels. Current and time ranges were constructed for both types of electrodes by varying either the weld current or weld time while holding all other parameters constant. Analysis of weld microstructures was conducted on cross-sectioned welds using SEM (scanning electron microscopy). Using the coated electrodes reduced weld current and times needed to form MWS (minimum weld size) on the coated steels.
Technical Paper

Coatings on Resistance Welding Electrodes to Extend Life

2006-04-03
2006-01-0093
TiCP/Ni coating has been deposited onto the electrodes by electro-spark deposition to improve electrode life during resistance welding of Zn-coated steels. However, welding results revealed that molten Zn penetrates into coating through the cracks and then reacts with substrate copper alloy to form brasses. In the present work, laser treatment was performed on the TiCP/Ni coated electrodes to eliminate cracks formed in the as-deposited TiCP/Ni coating. In addition, a multi-electro-spark deposition of Ni, TiCP/Ni and Ni has also been carried out to improve coating quality. On the other hand, a TiB2 coating was also investigated. those coatings were characterized by electro-microscopy, energy-dispersive X-ray analysis, X-ray diffraction and micro-hardness tests. The results showed that cracks within the as-deposited TiCP/Ni coating could be eliminated with the use of laser treatment or a multi-layer deposition process.
Journal Article

Optimal Cooperative Path Planning Considering Driving Intention for Shared Control

2020-04-14
2020-01-0111
This paper presents an optimal cooperative path planning method considering driver’s driving intention for shared control to address target path conflicts during the driver-automation interaction by using the convex optimization technique based on the natural cubic spline. The optimal path criteria (e.g. the optimal curvature, the optimal heading angle) are formulated as quadratic forms using the natural cubic spline, and the initial cooperative path profiles of the cooperative path in the Frenet-based coordinate system are induced by considering the driver’s lane-changing intention recognized by the Support Vector Machine (SVM) method. Then, the optimal cooperative path could be obtained by the convex optimization techniques. The noncooperative game theory is adopted to model the driver-automation interaction in this shared control framework, where the Nash equilibrium solution is derived by the model predictive control (MPC) approach.
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Technical Paper

Effect of Edge Finish on Fatigue Behavior of Thin Non-oriented Electrical Steel Sheets

2023-04-11
2023-01-0803
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples.
Technical Paper

Fatigue Life Prediction of an Automotive Chassis System with Combined Hardening Material Model

2016-04-05
2016-01-0378
The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
Technical Paper

Effect of Stress Triaxiality on the Constitutive Response of Super Vacuum Die Cast AM60B Magnesium Alloy

2014-04-01
2014-01-1015
The effect of stress triaxiality on failure strain in as-cast magnesium alloy AM60B is examined. Experiments using one uniaxial and two notched tensile geometries were used to study the effect of stress triaxiality on the quasi-static constitutive response of super vacuum die cast AM60B castings. For all tests, local strains, failure location and specimen elongation were tracked using two-dimensional digital image correlation (DIC) analysis. The uniaxial specimens were tested in two orthogonal directions to determine the anisotropy of the casting. Finite element models were developed to estimate effective plastic strain histories and stress state (triaxiality) as a function of notch severity. It was found that there is minimal, if any, anisotropy present in AM60B castings. Higher stress triaxiality levels caused increases in maximum stress and decreases in elongation and local effective plastic strain at failure.
X