Refine Your Search

Search Results

Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Technical Paper

Modeling Multiple Injection and EGR Effects on Diesel Engine Emissions

1997-10-01
972864
A modified version of the multi-dimensional KIVA-II code is used to model the effects of multiple injection schemes and exhaust gas recirculation (EGR) on direct injected diesel engine NOx and soot emissions. The computational results, which also considered double and triple injection schemes and varying EGR amounts, are compared with experimental data obtained from a single cylinder version of a Caterpillar heavy-duty truck engine. The study is done at high load (75% of peak torque at 1600 rpm) where EGR is known to produce unacceptable increases in soot (particulate). The effect of soot and spray model formulations are considered. This includes a new spray model based on Rayleigh-Taylor instabilities for liquid breakup. A soot oxidation model that accounts for turbulent mixing and kinetic effects were found to give accurate results. The results showed excellent agreement between predicted and measured in-cylinder pressure, and heat release data for the various cases.
Technical Paper

Numerical Predictions of Diesel Flame Lift-off Length and Soot Distributions under Low Temperature Combustion Conditions

2008-04-14
2008-01-1331
The lift-off length plays a significant role in spray combustion as it influences the air entrainment upstream of the lift-off location and hence the soot formation. Accurate prediction of lift-off length thus becomes a prerequisite for accurate soot prediction in lifted flames. In the present study, KIVA-3v coupled with CHEMKIN, as developed at the Engine Research Center (ERC), is used as the CFD model. Experimental data from the Sandia National Labs. is used for validating the model predictions of n-heptane lift-off lengths and soot formation details in a constant volume combustion chamber. It is seen that the model predictions, in terms of lift-off length and soot mass, agree well with the experimental results for low ambient density (14.8 kg/m3) cases with different EGR rates (21% O2 - 8% O2). However, for high density cases (30 kg/m3) with different EGR rates (15% O2 - 8% O2) disagreements were found.
Technical Paper

Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions

2009-04-20
2009-01-1442
A study of partially premixed combustion (PPC) with non-oxygenated 91 pump octane number1 (PON) commercially available gasoline was performed using a heavy-duty (HD) compression-ignition (CI) 2.44 l Caterpillar 3401E single-cylinder oil test engine (SCOTE). The experimental conditions selected were a net indicated mean effective pressure (IMEP) of 11.5 bar, an engine speed of 1300 rev/min, an intake temperature of 40°C with intake and exhaust pressures of 200 and 207 kPa, respectively. The baseline case for all studies presented had 0% exhaust gas recirculation (EGR), used a dual injection strategy a -137 deg ATDC pilot SOI and a -6 deg ATDC main start-of-injection (SOI) timing with a 30/70% pilot/main fuel split for a total of 5.3 kg/h fueling (equating to approximately 50% load). Combustion and emissions characteristics were explored relative to the baseline case by sweeping main and pilot SOI timings, injection split fuel percentage, intake pressure, load and EGR levels.
Technical Paper

Effects of Multiple Injections and Flexible Control of Boost and EGR on Emissions and Fuel Consumption of a Heavy-Duty Diesel Engine

2001-03-05
2001-01-0195
A study of the combined use of split injections, EGR, and flexible boosting was conducted. Statistical optimization of the engine operating parameters was accomplished using a new response surface method. The objective of the study was to demonstrate the emissions and fuel consumption capabilities of a state-of-the-art heavy -duty diesel engine when using split injections, EGR, and flexible boosting over a wide range of engine operating conditions. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. Similarly, boost has been shown to be an important parameter to optimize. During the experiments, an instrumented single-cylinder heavy -duty diesel engine was used.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission

1998-02-01
980131
A new spray model has been developed to improve the prediction of diesel engine combustion and emissions using the KIVA-II CFD code. The accuracy of modeling the spray breakup process has been improved by the inclusion of Rayleigh-Taylor accelerative instabilities, which are calculated simultaneously with a Kelvin-Helmholtz wave model. This model improves the prediction of the droplet sizes within a diesel spray and provides a more accurate initial condition for the evaporation, combustion, and emissions models. An improvement to the droplet drag model is also presented. This model accounts for the increased droplet drag due to the change in the droplet's shape, as well as the increase in the frontal area of the droplet. The drag model affects the breakup process locally, producing a more realistic droplet size distribution, and therefore a more accurate calculation of the vaporization process.
Technical Paper

Modelling the Influence of Fuel Injection Parameters on Diesel Engine Emissions

1998-02-23
980789
Rate shaping of the fuel injection process is known to significantly impact emissions production in diesel engines. To demonstrate the ability of multidimensional engine modeling to quantify and explain the effect of rate shaping and injection duration, three injection profiles typical of common diesel fuel injection systems were investigated for three injection durations and injection timings. The present study uses an improved version of the KIVA-II engine simulation code employing the characteristic time combustion model, the Kelvin-Helmholtz and the Rayleigh-Taylor spray atomization mechanisms, the extended Zeldovich thermal NOx production model, and a single species soot model.
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions

1994-03-01
940523
The three-dimensional KIVA code has been used to study the effects of injection pressure and split injections on diesel engine performance and soot and NOx emissions. The code has been updated with state-of-the-art submodels including: a wave breakup atomization model, drop drag with drop distortion, spray/wall interaction with sliding, rebounding, and breaking-up drops, multistep kinetics ignition and laminar-turbulent characteristic time combustion, wall heat transfer with unsteadiness and compressibility, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The computational results are compared with experimental data from a single-cylinder Caterpillar research engine equipped with a high-pressure, electronically-controlled fuel injection system, a full-dilution tunnel for soot measurements, and gaseous emissions instrumentation.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Reducing Particulate and NOx Using Multiple Injections and EGR in a D.I. Diesel

1995-02-01
950217
An emissions and performance study was conducted to explore the effects of EGR and multiple injections on particulate, NOx, and BSFC. EGR is known to be effective at reducing NOx, but at high loads there is usually a large increase in particulate. Recent work has shown that multiple injections are effective at reducing particulate. Thus, it was of interest to examine the possibility of simultaneously reducing particulate and NOx with the combined use of EGR and multiple injections. The tests were conducted on a fully instrumented single cylinder version of the Caterpillar 3406 heavy duty truck engine. Tests were done at high load (75% of peak torque at 1600 RPM where EGR has been shown to produce unacceptable increases in particulate emissions. The fuel system used was an electronically controlled, common rail injector and supporting hardware. The fuel system was capable of up to four independent injections per cycle.
Technical Paper

In-Cylinder Diesel Flame Imaging Compared with Numerical Computations

1995-02-01
950455
An image acquisition-and-processing camera system was developed for in-cylinder diagnostics of a single-cylinder heavy duty diesel engine. The engine was equipped with an electronically-controlled common-rail fuel injection system that allowed both single and split (multiple) injections to be studied. The imaging system uses an endoscope to acquire luminous flame images from the combustion chamber and ensures minimum modification to the engine geometry. The system also includes an optical linkage, an image intensifier, a CID camera, a frame grabber, control circuitry and a computer. Experiments include both single and split injection cases at 90 MPa and 45 MPa injection pressures at 3/4 load and 1600 rev/min with simulated turbocharging. For the single injection at high injection pressure (90 MPa) the results show that the first luminous emissions from the ignition zone occur very close to the injector exit followed by rapid luminous flame spreading.
Technical Paper

Modeling the Use of Air-Injection for Emissions Reduction in a Direct-Injected Diesel Engine

1995-10-01
952359
This study investigates the effect of air-injection during the late combustion period produced by an air-cell on emissions from a direct injected diesel engine. The engine considered is a Caterpillar 3401 test engine which was modeled with an air-cell included as part of the piston geometry. A version of the KIVA-II code with updated submodels for diesel combustion and emissions was modified to allow for geometries with walls interior to the domain. This modified version of KIVA-II was then used to model an air-cell equipped diesel engine for four different air-cell configurations. Of the four air-cell configurations simulated, one proved successful in reducing the predicted engine emissions by more than a factor of two while simultaneously reducing NOx by a slight amount, thus moving the engine off its particulate-NOx tradeoff curve defined by varying the fuel injection timing.
Technical Paper

Diesel Engine Model Development and Experiments

1995-04-01
951200
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
X