Refine Your Search

Topic

Author

Search Results

Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Objective Evaluation of Steering Rack Force Behaviour and Identification of Feedback Information

2016-09-02
2016-01-9112
Electric power steering systems (EPS) are characterized by high inertia and therefore by a considerably damped transmission behaviour. While this is desirable for comfort-oriented designs, EPS do not provide enough feedback of the driving conditions, especially for drivers with a sporty driving style. The systematic actuation of the electric motor of an EPS makes it possible to specifically increment the intensity of the response. In this context, the road-sided induced forces of the tie rod and the steering rack force provide all the information for the steering system’s response. Former concepts differentiate between use and disturbance information by defining frequency ranges. Since these ranges overlap strongly, this differentiation does not segment distinctively. The presented article describes a method to identify useful information in the feedback path of the steering system depending on the driving situation.
Technical Paper

Realizing Future Trends in Diesel Engine Development

1997-08-06
972686
Volkswagen is the first automobile manufacturer to supply a passenger car with a direct fuel injection diesel engine to the US market, starting 1996. To meet the stringent US exhaust gas legislation the very successful European 1.9 liter TDI engine has been further developed for the 1996 and 1997 Passat. This TD1 incorporates a number of innovations in advanced diesel technology. Emissions-reducing innovations include: reduced crevice volume higher injection pressures upgraded injection management integrated EGR manifold system EGR cooling diesel catalytic converter This TDI engine configuration is also to be offered in the 1997 Golf and Jetta class and the new Passat in model year 1998. Over the coming years the TDI engine concept will be further optimized by utilizing variations of the above innovations.
Technical Paper

Vehicle Infotronics-The Driver Assistant Approach

1998-10-19
98C024
A new approach to improve the driver's safety is to actively support the driving task and prevent possibly dangerous situations. This paper is about the family of driver assistance systems which will combine three steps of information processing: Automatic collection of data by scanning the environment of the vehicle; Automatic processing of data according to the need of the driver and his driving task; Appropriate presentation of valuable information to the driver. Electronic sensor systems will enlarge the driver's knowledge about what is actually going on around his vehicle. These systems expand the human sensor systems eye and ear for the special purpose "safe driving."
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

Evaluation of an UV-Analyzer for the Simultaneous NO and NO2 Vehicle Emission Measurement

2004-06-08
2004-01-1830
For the measurement of NO and NO2 the CLD-analyzer (chemiluminescense detector) has been used for more than twenty-five years. The disadvantage of the CLD is that NO can be measured only. To obtain total NOX (NO+NO2) the exhaust gas sample has to flow through a catalytic converter, which reduces NO2 to NO. The converter has a efficiency between 90 and 100%. For precise NO and NO2 values it is an advantage to analyze NO and NO2 directly. This paper describes a new UV NOX-analyzer for the simultaneous measurement of NO and NO2. Two different configurations, for high and low concentrations, eg. CVS-bag analysis are presented. The performance of the analyzers is documented in comparison to the UV-RAS analyzer with converter for NOX [1] and the conventional CLD-analyzer. The benefits of the new analyzer compared to analyzers equipped with a converter are given in detailed test results.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Human Factors Data in Relation to Whiplash Injuries in Rear End Collisions of Passsenger Cars

1998-03-01
981191
Cervical Spine Distortions (CSD) - sometimes called whiplash injuries - have turned out in passenger car accidents to be one of the most important types of injuries to occupants, according to the rate of occurences and to the significance of consequences as well. Many technical aspects of traffic accidents which in the past have led to CSD have been analysed and reported in a large number of publications. However human factors data are not as good represented in the literature. Particularly these parameters and their relationship to whiplash injuries have been analysed on the basis of the Volkswagen Accident Database. The significance of the items gender, age, body height and body weight of belted occupants in passenger cars involved in rear end collisions is presented in quantitative terms regarding frequencies of occurance and risk of suffering CSD respectively.
Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A New Method to Assess the Summer Suitability of Car Seats

1993-03-01
930106
A new method has been designed to examine car seats by technical means only, whether they fit summer conditions or not. Test procedures start with the application of a carefully wetted cloth onto the seat to be examined. The test area is then covered by a temperature controlled, electrically heated solid body bloc. This simulates the body temperature and the seat pressure of a real seat user. During test periods of standard three hours, temperature and humidity is measured beneath the test device and in the surrounding air. As an effect of the water impulse the humidity increases under the body bloc. It has been proved that good summer suitability of a car seat is characterised by moderate amount and moderate duration of increased humidity readings. Poor suitability results in higher amount and longer duration of raised humidity. The method is shown to be useful to examine full scale car seats, child safety seats and single design characteristics of car seats as well.
Technical Paper

European Diesel Research IDEA-Experimental Results from DI Diesel Engine Investigations

1994-10-01
941954
Within the European research programme IDEA (Integrated Diesel European Action), detailed experimental and theoretical studies of the fundamental phenomena of the Diesel engine like flow, injection, mixture formation, auto-ignition, combustion and pollutant formation were carried out to improve knowledge and to set up models for a simulation code. Because this basic research of the Diesel combustion process is very complex and cost intensive, it was carried out jointly by the JRC (Joint Research Committee), an association of European car manufacturers (Fiat, Peugeot SA, Renault, Volvo and Volkswagen). The activities were also subsidized by the Commission of the European Communities and the Swedish National Board of Technical Development. The results of the research work will support the design of even more efficient engines and the further reduction of soot and NOx emissions and will also enable the companies to reduce time and cost in developing new engines.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Brake Judder - Analysis of the Excitation and Transmission Mechanism within the Coupled System Brake, Chassis and Steering System

2005-10-09
2005-01-3916
The prevention of any brake noise or brake-induced body vibrations is a key development target firmly integrated in the car development process. Emphasis is placed here on disc brake judder that is attributable to thickness variations in the disc. These deviations from the ideal plane surface can be caused either by wear and corrosion or by thermal stresses (changes within the microstructure of the disc material). They are termed “cold judder” and “thermal judder” respectively. During braking, possible vibration excitation passes through a wide frequency band due to the coupling between the judder frequency and the wheel rotational speed, and thus, resonant frequencies of many vehicle components can be excited. This includes wheel suspension components and the steering column. In this paper, it is reported on extensive investigations into the topic of “cold judder”.
Technical Paper

Required Measures to Improve the Structural Interaction Potential of Passenger-Cars

2005-04-11
2005-01-1351
Compatibility has been a passive safety research issue for many years. Great advancements in secondary (passive) safety have been achieved in the last decades through focussing on the self-protection level provided by passenger cars. The next step is to consider the other vehicle involved in the collision as well. Compatibility relates to the simultaneous improvement of both self- and partner- protection. Several tests procedures have been proposed around the world to assess the compatibility of passenger cars. None are considered ready to be implemented. This paper shows that controlling vehicle front-end geometry is the most feasible step to improve both self- and partner-protection. Through this, an increase in the structural interaction potential offered by passenger cars would result. To improve structural interaction, a convergence of front-end structures, to within certain vertical limits, is necessary.
Technical Paper

Development and Verification of In-Vehicle Networks in a Virtual Environment

2005-04-11
2005-01-1534
Due to the increase in demand for comfort and safety features in today's automobiles, the internal vehicle communication networks necessary to accommodate these features are very complex. These networks represent a heterogeneous architecture consisting of several ECUs exchanging information via bus systems such as CAN, LIN, MOST, or FlexRay buses. Development and verification of internal vehicle networks include multiple design layers. These layers are the logical layer represented by the software application, the associated data link layer, and the physical connection layer containing bus interfaces, wires, and termination. Verification of these systems in the early stages of the design process (before a physical network is available for testing) has become a critical need. As a result, the need to simulate these designs at all their levels of complexity has become critically important.
Technical Paper

The Volkswagen Vanagon Syncro - A Novel 4 WD Concept with the Mew 2.11 Watercooled Engine

1986-10-01
861350
The VOLKSWAGEN VANAGON SYNCRO is presented as a novel 4 WD. The visco coupling is the heart of the forward drive train. Main advantages are automatic performance distribution between the axles and self-locking at extreme revolution differences between front and rear. Another important advantage of the standard 2 WD Vanagon is the well-known excellent spring suspension and damping comfort which is not negatively effected by the 4 WD technique. The vehicle is equipped with a new more powerful engine with 2,1 liter displacement and 70 kW (95 HP) nominal power output which is based on the watercooled horizontally opposed engine program. Electronic fuel injection and ignition are integrated into a unique Volkswagen system called DIGIFANTR. Vehicle performance data and fuel economy figures are given in comparison with 2 WD designs and previously available engine power train combinations.
Technical Paper

Synchronous Switched Scheduling with Heterogeneous Cycle Configurations for Efficient Bandwidth Usage in a FlexRay Cluster

2010-04-12
2010-01-0691
A novel scheduling concept, called switched scheduling, for efficient bandwidth usage in a FlexRay cluster is introduced. It assumes a synchronized FlexRay cluster divided into several branches using an intelligent active star. The concept allows the simultaneous usage of the same timeslot by different nodes as well as the realization of slot multiplexing without changing the FlexRay protocol version 2.1. Furthermore it enables the usage of heterogeneous cycle configurations for each branch while synchronization is still provided for the whole cluster. In addition to the scheduling concept a design approach based on AUTOSAR is presented to enable the model-driven development of the resulting schedule which is called multidimensional schedule.
Technical Paper

Resource Management Processes for Future Vehicle Electronics

2016-04-05
2016-01-0039
New technologies such as multi-core and Ethernet provide vastly improved computing and communications capabilities. This sets the foundation for the implementation of new digital megatrends in almost all areas: driver assistance, vehicle dynamics, electrification, safety, connectivity, autonomous driving. The new challenge: We must share these computing and communication capacities among all vehicle functions and their software. For this step, we need a good resource planning to minimize the probability of late resource bottlenecks (e.g. overload, lack of real-time capability, quality loss). In this article, we summarize the status quo in the field of resource management and provide an outlook on the challenges ahead.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
X