Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

1998-02-23
980895
Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Technical Paper

Injection Parameter Effects on a Direct Injected, Pilot Ignited, Heavy Duty Natural Gas Engine with EGR

2003-10-27
2003-01-3089
Pilot-ignited direct injection of natural gas fuelling of a heavy-duty compression ignition engine while using recirculated exhaust gas (EGR) has been shown to significantly reduce NOx emissions. To further investigate emissions reductions, the combustion timing, injection pressure, and relative delay between the pilot and main fuel injections were varied over a range of EGR fractions while engine speed, net charge mass, and oxygen equivalence ratio were held constant. PM emissions were reduced by higher injection pressures without significantly affecting NOx at all EGR conditions. By delaying the combustion, NOx was reduced at the expense of increased PM for a given EGR fraction. By reducing the delay between the pilot and main fuel injections at high EGR, PM emissions were substantially reduced at the expense of increased total hydrocarbon (tHC) emissions. In this research, no attempt was made to optimize the injector or combustion chamber for natural gas fuelling with EGR.
Technical Paper

Effects of EGR Addition onto Combustion Stability and Alternator Performance Variability of a Small, Single-Cylinder Diesel Generator

2016-11-08
2016-32-0063
The aim of this investigation was to improve understanding and quantify the impact of exhaust gas recirculation (EGR) as an emissions control measure onto cyclic variability of a small-bore, single-cylinder, diesel-fueled compression-ignition (CI) power generation unit. Of special interest were how cycle-to-cycle variations of the CI engine affect steady-state voltage deviations and frequency bandwidths. Furthermore, the study strived to elucidate the impact of EGR addition onto combustion parameters, as well as gaseous and particle phase emissions along with fuel consumption. The power generation unit was operated over five discrete steady-state test modes, representative of nominal 0, 25, 50, 75, and 100% engine load (i.e. 0-484kPa BMEP), by absorbing electrical power via a resistive load bank. The engine was equipped with a passive EGR system that directly connected the exhaust and intake runners through a small passage.
Technical Paper

The Effects of Reingested Particles on Emissions from a Heavy-Duty Direct Injection of Natural Gas Engine

2006-10-16
2006-01-3411
The use of exhaust gas recirculation (EGR) to control NOx emissions from direct-injection engines results in the reintroduction of exhaust particulate matter (PM) into the intake manifold. The influence of this recirculated PM on emissions from a pilot-ignited direct injection of natural gas engine was studied by installing a filter in the EGR system. Comparison tests at fixed engine conditions were conducted to identify differences between filtered and unfiltered EGR. No significant variations in gaseous or PM mass emissions were detected. This indicates that the recirculated PM is not contributing substantially to the increases in PM mass emissions commonly observed with EGR. Reductions in black carbon and ultra-fine particle exhaust concentrations in the exhaust were observed at the highest EGR fractions with the filter installed.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Contribution of Soot Contaminated Oils to Wear

1998-05-04
981406
Among the key technologies currently being used for reducing emissions of oxides of nitrogen, Exhaust Gas Recirculation (EGR) has been found to be very effective for light duty diesel engines. However, EGR results in a sharp increase in particulate matter emissions in heavy-duty diesel engines. The presence of increased levels of particulate matter in the engine has led to increased wear of engine parts such as cylinder liners, piston rings, valve train system and bearings. A statistically designed experiment was developed to examine the effects of soot contaminated engine oil on wear of engine components. A three-body wear machine was designed and developed to simulate and estimate the extent of wear. The three oil properties studied were phosphorous level, dispersant level and sulfonate substrate level. The above three variables were formulated at two levels: High (1) and Low (-1). This resulted in a 23 matrix (8 oil blends).
Technical Paper

Exhaust Gas Recirculation in a Lean-Burn Natural Gas Engine

1998-05-04
981395
Lean-burn natural gas engines offer attractively low particulate matter emissions and enjoy higher efficiencies than their stoichiometric counterparts. However, even though oxides of nitrogen emissions can be reduced through operation at lambda ratios of greater than 1.3, catalysts cannot reduce the oxides of nitrogen emissions in the oxidizing exhaust environment. Exhaust Gas Recirculation (EGR) offers the potential to reduce engine out oxides of nitrogen emissions by reducing the flame temperature and oxygen partial pressure that encourages their formation during the combustion process. A comparative study involving a change in the nature of primary diluent (air replaced by EGR) in the intake of a Hercules, 3.7 liter, lean-burn natural gas engine has been undertaken in this research. The Hercules engine was equipped with a General Motors electronically controlled EGR valve for low EGR rates, and a slide valve, constructed in house, for high EGR rates.
Technical Paper

PM and NOx Reduction by Injection Parameter Alterations in a Direct Injected, Pilot Ignited, Heavy Duty Natural Gas Engine With EGR at Various Operating Conditions

2005-04-11
2005-01-1733
The use of pilot-ignited, direct-injected natural gas in a heavy-duty compression-ignition engine has been shown to reduce emissions while maintaining performance and efficiency. Adding recirculated exhaust gas (EGR) has been shown to further reduce emissions of nitric oxides (NOx), albeit at the cost of increased hydrocarbons (tHC), carbon monoxide (CO), and particulate matter (PM) emissions at high EGR fractions. Previous tests have suggested that reducing the delay between the diesel and natural gas injections, increasing the injection pressure, or adjusting the combustion timing have individually achieved substantial emissions benefits. To investigate the effectiveness of combining these techniques, and of using them over a wide range of operating conditions, a series of tests were carried out. The first set of tests investigated the interactions between these effects and the EGR fraction.
Technical Paper

Development of a Compression Ignition Heavy Duty Pilot-Ignited Natural Gas Fuelled Engine for Low NOx Emissions

2004-10-25
2004-01-2954
A heavy-duty compression ignition engine using EGR and pilot-ignited directly injected natural gas fueling was calibrated for low NOx emissions. A Cummins ISX engine using cooled EGR was fitted with a Westport HPDI™ fuel system and an oxidation catalyst. The base engine hardware was modified to increase EGR rates (up to 40%). The engine, rated at 336 kW (450 hp) and 2236Nm (1650 ft-lbs), was calibrated and tested over steady state and transient test cycles. Steady state testing over the ESC 13-mode test cycle resulted in weighted composite NOx emissions of 0.36 g/bhp-hr and particulate matter emissions of 0.04 g/bhp-hr. Transient testing over the US EPA specified FTP cycle resulted in average NOx emissions of 0.6 g/bhp-hr and PM emissions of 0.03 g/bhp-hr.
Technical Paper

The Effects of Varying EGR Test Conditions on a Direct Injection of Natural Gas Heavy-Duty Engine with High EGR Levels

2004-10-25
2004-01-2955
Determining what exhaust gas recirculation (EGR) control parameters have the largest impact on engine performance and emissions is of critical importance when developing an EGR-equipped engine. These tests studied the effects of varying the net charge mass, the fresh air charge mass, the indicated power, and the oxygen equivalence ratio at various EGR fractions. The research was carried out on a direct-injection, natural gas fuelled, pilot-ignited four-stroke heavy-duty engine using Westport Innovations Inc.'s pilot-ignited, direct injection of natural gas technology. The testing was carried out using a prototype injector and the standard diesel-fuelled engine's combustion chamber. The results indicate that fuel efficiency, as well as emissions of Nitrogen Oxides (NOx) and Carbon Monoxide (CO) depend primarily on the EGR level, and not on the values of the EGR control parameters.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

Investigating the Potential of Waste Heat Recovery as a Pathway for Heavy-Duty Exhaust Aftertreatment Thermal Management

2015-04-14
2015-01-1606
Heavy-duty diesel (HDD) engines are the primary propulsion source for most heavy-duty vehicle freight movement and have been equipped with an array of aftertreatment devices to comply with more stringent emissions regulations. In light of concerns about the transportation sector's influence on climate change, legislators are introducing requirements calling for significant reductions in fuel consumption and thereby, greenhouse gas (GHG) emission over the coming decades. Advanced engine concepts and technologies will be needed to boost engine efficiencies. However, increasing the engine's efficiency may result in a reduction in thermal energy of the exhaust gas, thus contributing to lower exhaust temperature, potentially affecting aftertreatment activity, and consequently rate of regulated pollutants. This study investigates the possible utilization of waste heat recovered from a HDD engine as a means to offset fuel penalty incurred during thermal management of SCR system.
Technical Paper

Emissions from a Legacy Diesel Engine Exercised through the ACES Engine Test Schedule

2008-06-23
2008-01-1679
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
X