Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

2009-06-15
2009-01-1792
It is generally accepted that emissions of nitrogen oxides (NOx) increase as the volume fraction of bio diesel increases in blends with conventional diesel fuel. While many mechanisms based on bio diesel effects on in-cylinder processes have been proposed to explain this observation, a clear understanding of the relative importance of each has remained elusive. To gain further insight into the cause(s) of the bio diesel NOx increase, experiments were conducted in a single-cylinder version of a heavy-duty diesel engine with extensive optical access to the combustion chamber. The engine was operated using two bio diesel fuels and two hydrocarbon reference fuels, over a wide range of loads, and using undiluted air as well as air diluted with simulated exhaust gas recirculation.
Journal Article

Intermediate Combustion Modes between Conventional Diesel and RCCI

2018-04-03
2018-01-0249
In recent years, several unconventional fueling modes have been developed for dual-fuel compression ignition (CI) engines. One such mode is reactivity controlled compression ignition (RCCI), which utilizes both a low-reactivity fuel (LRF) and a high-reactivity fuel (HRF) via separate injection systems. RCCI has been tested with many fuels, but there have been relatively few tests on the intermediate modes that exist in between RCCI and conventional diesel combustion (CDC). For this purpose, a quantitative classification system of fueling modes was created and used to test incremental changes in the fueling mode of a 1.9L General Motors (GM) turbodiesel engine, shifting between CDC and RCCI at a single speed/load point. This engine used a 5:2 mass ratio blend of propane and dimethyl ether (DME) as its LRF and ultra-low-sulfur diesel (ULSD) as its HRF.
Technical Paper

Potential Methods for NOx Reduction from Biodiesel

2003-10-27
2003-01-3205
Interest in biodiesel is increasing in the United States because it is a renewable fuel source that decreases carbon monoxide, unburned hydrocarbon, and particulate matter emissions. Although it is more expensive than petroleum based diesel fuel, it is a cost-effective fuel for government agencies to obtain EPAct alternative fuel credits. However, a 20% biodiesel blend in diesel fuel (B20) causes an average increase in NOx emissions of 2-5%. The emissions of NOx are critical, especially in ozone non-attainment areas, making the increase with biodiesel problematic to its widespread use. Using cetane improving additives and modifying feedstock composition are two possible methods to reduce NOx emissions from biodiesel. This study further explores the feasibility of these methods.
Technical Paper

Preliminary Investigation On the Viability of 1,3-Dioxolane as an Alternative to MTBE in Reformulated Gasoline

2001-09-24
2001-01-3683
An experimental investigation was conducted to determine the efficiency of 1,3-dioxolane as an alternative oxygenate to MTBE in Reformulated Gasoline. In the investigation, the effect of adding 1,3 dioxolane on octane rating was evaluated. The octane number of the fuels was determined using a Waukesha single cylinder, 4-stroke cycle, 2-valve, CFR F-2U octane rating unit. Certified 87 octane gasoline was used as the base fuel which 1,3-dioxolane was added at specific volumetric proportions. Iso-octane (100 octane number) and N-heptane (0 octane number) are primary reference fuels that were blended at volumetric proportions to produce a reference base of known octane number. The reference base fuel of known octane number was used for comparison of knock tendency to the test fuels under the ASTM D 2699 (Research) and ASTM D 2700 (Motor) methods of testing.
Technical Paper

Emission Characteristics of a Navistar 7.3L Turbodiesel Fueled with Blends of Dimethyl Ether and Diesel Fuel

2001-09-24
2001-01-3626
Several oxygenates have been proposed and tested for use with diesel fuel as a means of reducing exhaust emissions. This paper examines dimethyl ether (DME), which can be produced in many ways including via Air Products and Chemicals, Inc's Liquid Phase Technology (LPDME ™). Modest additions of DME into diesel fuel (2 wt.% oxygen) showed reductions in particulate matter emissions, but the previous data reported by the author from a multicylinder Navistar 7.3L Turbodiesel engine were scattered. In this study, experiments were performed on a multi-cylinder Navistar 7.3L Turbodiesel engine to repeatably confirm and extend the observations from the earlier studies. This is an important step in not only showing that the fuel does perform well in an engine with minor modifications to the fuel system, but also showing that DME can give consistent, significant results in lowering emissions.
Technical Paper

Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus

2003-03-03
2003-01-0756
Dimethyl Ether (DME) is a potential ultra-clean diesel fuel. Its unique characteristics require special handling and accommodation of its low viscosity and low lubricity. In this project, DME was blended with diesel fuel to provide sufficient viscosity and lubricity to permit operation of a 7.3 liter turbodiesel engine in a campus shuttle bus with minimal modification of the fuel injection system. A pressurized fuel delivery system was added to the existing common rail injection system on the engine, allowing the DME-diesel fuel blend to be circulated through the rail at pressures above 200 psig keeping the DME in the liquid state. Fuel exiting the rail is cooled by finned tubed heat exchangers and recirculated to the rail using a gear pump. A modified LPG tank (for use on recreational vehicles) stores the DME- diesel fuel blend onboard the shuttle bus.
Technical Paper

Behavior of a Diesel Injection System with Biodiesel Fuel

2003-03-03
2003-01-1039
Biodiesel fuels are widely known to yield an increase in NOx emissions in many diesel engines. It has been suggested that the increase in NOx is due to injection timing differences caused by the low compressibility of biodiesel. In this work, comparisons of injection timing and duration were performed for diesel fuel and a range of biodiesel blends (B20 to B100). The fuel injector on a 4-stroke, single-cylinder, four horsepower, air-cooled, direct injection diesel engine was positioned in a spray chamber while the engine was motored and fuel was delivered to the injector by the fuel pump on the engine. Spray visualization and quantification of injection timing were performed in the spray chamber using an engine videoscope, light attenuation from a HeNe laser and fuel line pressure, and were synchronized to crank shaft position.
Technical Paper

Impact of Supplemental Natural Gas on Engine Efficiency, Performance, and Emissions

2013-04-08
2013-01-0847
In this study, the performance and emissions of a 4 cylinder 2.5L light-duty diesel engine with methane fumigation in the intake air manifold is studied to simulate a dual fuel conversion kit. Because the engine control unit is optimized to work with only the diesel injection into the cylinder, the addition of methane to the intake disrupts this optimization. The energy from the diesel fuel is replaced with that from the methane by holding the engine load and speed constant as methane is added to the intake air. The pilot injection is fixed and the main injection is varied in increments over 12 crank angle degrees at these conditions to determine the timing that reduces each of the emissions while maintaining combustion performance as measured by the brake thermal efficiency. It is shown that with higher substitution the unburned hydrocarbon (UHC) emissions can increase by up to twenty times. The NOx emissions decrease for all engine conditions, up to 53%.
Technical Paper

Combustion and Emissions Performance of Low Sulfur, Ultra Low Sulfur and Biodiesel Blends in a DI Diesel Engine

2004-10-25
2004-01-3024
Experiments were conducted with a commercially available six-cylinder, 4-valves per cylinder, turbocharged, direct injection (DI) diesel engine. The engine was operated with low sulfur diesel fuel, ultra low sulfur diesel fuel and two other blends, low sulfur diesel fuel with 20 wt.% biodiesel and ultra low sulfur diesel fuel with 20 wt.% biodiesel, to investigate the effect of the base fuels and their blends on combustion and emissions. Combustion analysis, particulate matter emissions and exhaust gas composition (CO, NOX and total hydrocarbons) were determined at eight steady-state operating conditions according to the AVL 8-Mode test protocol. Combustion analysis showed at high load conditions a retarded start of injection, an earlier start of combustion and a lower premixed burn peak with ultra low sulfur diesel fuel. Mode averaged NOX emissions decreased with ultra low sulfur diesel fuel and biodiesel blends compared to low sulfur diesel fuel.
Technical Paper

Experimental Study of Post Injection Scheduling for Soot Reduction in a Light-Duty Turbodiesel Engine

2016-04-05
2016-01-0726
This experimental study involves optimization of the scheduling of diesel post injections to reduce soot emissions from a light-duty diesel engine. Previous work has shown that certain post injection schedules can reduce engine-out soot emissions when compared to conventional injection schedules for the same engine load. The purpose of this study is to investigate the impact of post injection scheduling for a range of engine conditions on a light duty multicylinder turbodiesel engine (1.9L GM ZDTH). For each engine operating condition, a test grid was developed so that only two variables (post injection duration and the commanded dwell time between main injection and post injection) were varied, with all other conditions held constant, in order to isolate the effects of the post injection schedule. Results have identified two distinct regimes of post injection schedules that reduce soot emissions.
Technical Paper

Dual Fuel Injection (DI + PFI) for Knock and EGR Dilution Limit Extension in a Boosted SI Engine

2018-09-10
2018-01-1735
Combined direct and port fuel injection (i.e., dual injection) in spark ignition engines is of increasing interest due to the advantages for fuel flexibility and the individual merits of each system for improving engine performance and reducing engine-out emissions. Greater understanding of the impact of dual injection will enable deriving the maximum benefit from the two injection systems. This study investigates the effects of dual injection on combustion, especially knock propensity and tolerance to exhaust gas recirculation (EGR) dilution at different levels of EGR. A baseline for comparison with dual injection results was made using direct injection fueling only. A splash blended E20 fuel was used for the direct injection only tests. For the dual injection tests, gasoline, representing 80% by volume of the total fuel, was injected using the direct injector, and ethanol, representing 20% by volume of the total fuel, was injected using the port fuel injector.
Technical Paper

Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel

2015-04-14
2015-01-1080
A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
Technical Paper

Emission Characteristics of a Navistar 7.3L Turbodiesel Fueled with Blends of Oxygenates and Diesel

2000-10-16
2000-01-2887
Several oxygenates have been proposed and tested for use with or as diesel fuel. This paper examines two such oxygenates, CETANER™ and dimethyl ether (DME), partially or wholly produced by Air Products and Chemicals, Inc's Liquid Phase Technology. In previous studies on a single cylinder compression ignition engine and a Volkswagen TDI four cylinder engine, significant reductions in particulate matter emissions were observed with blends of CETANER™ in diesel fuel. In this study, experiments were performed on a multi-cylinder Navistar 7.3L Turbodiesel engine confirmed and extended the observations from the earlier studies. This is an important step in not only showing that the fuel does perform on each type of engine in similar fashion, but also in showing that DME and its derivatives can give consistent, significant results in lowering emissions. The oxygenated fuels were blended to achieve a net addition of 2 wt.% oxygen in the blended fuel.
X