Refine Your Search

Search Results

Viewing 1 to 14 of 14
Journal Article

Hydrogen SI and HCCI Combustion in a Direct-Injection Optical Engine

2009-06-15
2009-01-1921
Hydrogen has been largely proposed as a possible alternative fuel for internal combustion engines. Its wide flammability range allows higher engine efficiency with leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. Independently, Homogenous Charge Compression Ignition (HCCI) also allows higher thermal efficiency and lower fuel consumption with reduced NOX emissions when compared to Spark-Ignition (SI) engine operation. For HCCI combustion, a mixture of air and fuel is supplied to the cylinder and autoignition occurs from compression; engine is operated throttle-less and load is controlled by the quality of the mixture, avoiding the large fluid-dynamic losses in the intake manifold of SI engines. HCCI can be induced and controlled by varying the mixture temperature, either by Exhaust Gas Recirculation (EGR) or intake air pre-heating.
Journal Article

Characteristics of Ethanol, Butanol, Iso-Octane and Gasoline Sprays and Combustion from a Multi-Hole Injector in a DISI Engine

2008-06-23
2008-01-1591
Recent pressures on vehicle manufacturers to reduce their average fleet levels of CO2 emissions have resulted in an increased drive to improve fuel economy and enable use of fuels developed from renewable sources that can achieve a net reduction in the CO2 output of each vehicle. The most popular choice for spark-ignition engines has been the blending of ethanol with gasoline, where the ethanol is derived either from agricultural or cellulosic sources such as sugar cane, corn or decomposed plant matter. However, other fuels, such as butanol, have also arisen as potential candidates due to their similarities to gasoline, e.g. higher energy density than ethanol. To extract the maximum benefits from these new fuels through optimized engine design and calibration, an understanding of the behaviour of these fuels in modern engines is necessary.
Technical Paper

Experimental Investigation of the Internal Flow Field of a Model Gasoline Injector Using Micro-Particle Image Velocimetry

2006-10-16
2006-01-3374
The spray characteristics of a gasoline injector depend not only on the physics of atomization of the liquid jet on exit from the nozzle plate but also on the level of turbulence generated by the internal flow, upstream of the nozzle plate, as well as on whether cavitation arises. Measurement of the internal flow field of an injector can thus provide useful information and can assist the evaluation of the accuracy of computer predictions of the flow and associated cavitation. Information about the flow field upstream of nozzle exits is, however, rare and this forms the background to this work. Two-Dimensional Micro Particle Imaging Velocimetry (μPIV) was employed to measure the internal flow field in planes parallel to a plane of symmetry of the injector, downstream of the needle valve centring boss of a 10:1 super-scale transparent model of an 8-nozzle gasoline injector, with exit model-nozzle diameters of 2mm and a fixed model-needle lift of 0.8mm.
Journal Article

Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels

2014-10-13
2014-01-2745
One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit.
Technical Paper

An Optical Study of Spray Development and Combustion of Ethanol, Iso-Octane and Gasoline Blends in a DISI Engine

2008-04-14
2008-01-0073
In recent times regulatory pressure to reduce CO2 emissions has driven research towards looking at blending fossil fuels with alternatives such as crop-produced alcohols. The alcohol of interest in this paper is ethanol and it was studied in mixtures with gasoline and iso-octane in an optical spark-ignition engine, running at 1500 RPM at low-load operation with 0.5 bar absolute intake plenum pressure. Specifically, tests involved fuels of 100% gasoline and 100% iso-octane, so that differences between multi and single-component fuels could be compared within this environment. A mixture of 25% ethanol with 75% iso-octane was also tested and compared. Finally, mixtures of high-percentage of ethanol (85% ethanol) in gasoline and in iso-octane were used in the study and compared. Tests were undertaken using a standard port injection system as well as a direct injection system so an appraisal of both mixture preparation methods could be made.
Technical Paper

Combining Unthrottled Operation with Internal EGR under Port and Central Direct Fuel Injection Conditions in a Single Cylinder SI Engine

2009-06-15
2009-01-1835
This experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered.
Technical Paper

A Study of Alcohol Blended Fuels in an Unthrottled Single Cylinder Spark Ignition Engine

2010-04-12
2010-01-0618
This work involved study of the effects of alcohol blends on combustion, fuel economy and emissions in a single cylinder research engine equipped with a mechanical fully variable valvetrain on the inlet and variable valve timing on the exhaust. A number of splash blends of gasoline, iso-octane, ethanol and butanol were examined during port fuel injected early inlet valve closing operation, both with and without variable valve timing. Under low valve overlap conditions, it was apparent that the inlet valve durations/lifts required for full unthrottled operation were remarkably similar for the wide range of blends studied. However, with high valve overlap differences in burning velocities and internal EGR tolerances warranted changes in these valve settings.
Technical Paper

Experimental Investigation of Cavitation in Gasoline Injectors

2010-05-05
2010-01-1500
Spray characteristics of injectors depend on, among other factors, not only the level of turbulence upstream of the nozzle plate, but also on whether cavitation arises. "Bulk" cavitation, by which we mean cavitation which arises far from walls and thus far from streamline curvature associated with salient points on a wall, has not been investigated thoroughly experimentally and moreover it is quite challenging to predict by means of computational fluid dynamics. Information about the effect of the injector geometry on the formation of bulk cavitation and quantitative measurements of the flow field that promotes this phenomenon in gasoline injectors does not exist and this forms the background to this work. Evolution of bulk cavitation was visualized in two gasoline multi-hole injectors by means of a fast camera.
Technical Paper

Computational Study of Hydrogen Direct Injection for Internal Combustion Engines

2013-10-14
2013-01-2524
Hydrogen has been largely proposed as a possible fuel for internal combustion engines. The main advantage of burning hydrogen is the absence of carbon-based tailpipe emissions. Hydrogen's wide flammability also offers the advantage of very lean combustion and higher engine efficiency than conventional carbon-based fuels. In order to avoid abnormal combustion modes like pre-ignition and backfiring, as well as air displacement from hydrogen's large injected volume per cycle, direct injection of hydrogen after intake valve closure is the preferred mixture preparation method for hydrogen engines. The current work focused on computational studies of hydrogen injection and mixture formation for direct-injection spark-ignition engines. Hydrogen conditions at the injector's nozzle exit are typically sonic.
Technical Paper

Effects of Valve Deactivation on Thermal Efficiency in a Direct Injection Spark Ignition Engine under Dilute Conditions

2018-04-03
2018-01-0892
Reported in the current paper is a study into the cycle efficiency effects of utilising a complex valvetrain mechanism in order to generate variable in-cylinder charge motion and therefore alter the dilution tolerance of a Direct Injection Spark Ignition (DISI) engine. A Jaguar Land Rover Single Cylinder Research Engine (SCRE) was operated at a number of engine speeds and loads with the dilution fraction varied accordingly (excess air (lean), external Exhaust Gas Residuals (EGR) or some combination of both). For each engine speed, load and dilution fraction, the engine was operated with either both intake valves fully open - Dual Valve Actuation (DVA) - or one valve completely closed - Single Valve Actuation (SVA) mode. The engine was operated in DVA and SVA modes with EGR fractions up to 20% with the excess air dilution (Lambda) increased (to approximately 1.8) until combustion stability was duly compromised.
Technical Paper

Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine

2000-03-06
2000-01-1207
Lean combustion in spark-ignition engines has long been recognised as a means of reducing both exhaust emissions and fuel consumption. However, problems associated with cycle-by-cycle variations in flame initiation and development limit the range of lean-burn operation. An experimental investigation was undertaken in order to quantify the effects of spark energy released and initial flame kernel growth on the cyclic variability of IMEP and crank angle at which 5% mass fraction was burned in a Honda VTEC-E, stratified-charge, pentroof-type, single-cylinder, optically accessed, spark-ignition engine. Simultaneous CCD images of the flame at the spark plug were acquired from two orthogonal views (one through the piston crown and one through the pentroof) on a cycle-by-cycle basis during the first 40 crank angle degrees after ignition timing, for isooctane port injection at an air to fuel ratio of 22, engine speed of 1500 RPM, 30% volumetric efficiency and 40° crank angle spark advance.
Technical Paper

Characterization of Flame Development with Hydrous and Anhydrous Ethanol Fuels in a Spark-Ignition Engine with Direct Injection and Port Injection Systems

2014-10-13
2014-01-2623
This paper presents a study of the combustion mechanism of hydrous and anhydrous ethanol in comparison to iso-octane and gasoline fuels in a single-cylinder spark-ignition research engine operated at 1000 rpm with 0.5 bar intake plenum pressure. The engine was equipped with optical access and tests were conducted with both Port Fuel Injection (PFI) and Direct Injection (DI) mixture preparation methods; all tests were conducted at stoichiometric conditions. The results showed that all alcohol fuels, both hydrous and anhydrous, burned faster than iso-octane and gasoline for both PFI and DI operation. The rate of combustion and peak cylinder pressure decreased with water content in ethanol for both modes of mixture preparation. Flame growth data were obtained by high-speed chemiluminescence imaging. These showed similar trends to the mass fraction burned curves obtained by in-cylinder heat release analysis for PFI operation; however, the trend with DI was not as consistent as with PFI.
Technical Paper

Numerical Modelling of Mixture Formation and Combustion in DISI Hydrogen Engines with Various Injection Strategies

2014-10-13
2014-01-2577
International obligations to reduce carbon dioxide emissions and requirements to strengthen security of fuel supply, indicate a need to diversify towards the use of cleaner and more sustainable fuels. Hydrogen has been recommended as an encouraging gaseous fuel for future road transportation since with reasonable modifications it can be burned in conventional internal combustion engines without producing carbon-based tailpipe emissions. Direct injection of hydrogen into the combustion chamber can be more preferable than port fuel injection since it offers advantages of higher volumetric efficiency and can eliminate abnormal combustion phenomena such as backfiring. The current work applied a fully implicit computational methodology along with the Reynolds-Averaged Navier-Stokes (RANS) approach to study the mixture formation and combustion in a direct-injection spark-ignition engine with hydrogen fuelling.
Technical Paper

Developing Low Gasoline Particulate Emission Engines Through Improved Fuel Delivery

2014-10-13
2014-01-2843
Particulate emissions are of growing concern due to health impacts. Many urban areas around the world currently have particulate matter levels exceeding the World Health Organisation safe limits. Gasoline engines, especially when equipped with direct injection systems, contribute to this pollution. In recognition of this fact European limits on particulate mass and number are being introduced. A number of ways to meet these new stringent limits have been under investigation. The focus of this paper is on particulate emissions reduction through improvements in fuel delivery. This investigation is part of the author's ongoing particulate research and development that includes optical engine spray and combustion visualisation, CFD method development, engine and vehicle testing with the aim to move particulate emission development upstream in the development process.
X