Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

A Next Generation Cordierite Diesel Particle Filter with Significantly Reduced Pressure Drop

2011-04-12
2011-01-0813
Diesel particle filters (DPF) have become a standard aftertreatment component for all current and future on-road diesel engines used in the US. In Europe the introduction of EUVI is expected to also result in the broad implementation of DPF's. The anticipated general trend in engine technology towards higher engine-out NOx/PM ratios results in a somewhat changing set of boundary conditions for the DPF predominantly enabling passive regeneration of the DPF. This enables the design of a novel filter concept optimized for low pressure drop, low thermal mass for optimized regeneration and fast heat-up of a downstream SCR system, therefore reducing CO₂ implications for the DPF operation. In this paper we will discuss results from a next-generation cordierite DPF designed to address these future needs.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

Measurement and Prediction of Filtration Efficiency Evolution of Soot Loaded Diesel Particulate Filters

2012-04-16
2012-01-0363
Experimental and theoretical methods are presented to characterize the transient filtration efficiency (FE) behavior of Diesel Particulate Filters (DPFs) exposed to soot laden exhaust gas streams under laboratory and engine exhaust conditions. A (1+1) dimensional transient model, comprising a one dimensional channel model in combination with a one dimensional wall microstructure model is presented to study the sensitivity of the FE behavior on DPF microstructure and geometry properties, along with the impact of the hydrodynamic and aerosol flow conditions (flow rate, temperature, aerosol characteristics). The dynamic model also considers the dynamic soot oxidation by passive regeneration. The model has been validated through use of an extensive set of experimental data obtained under different operating conditions and with DPFs of different microstructure.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

On-Vehicle Fuel Cut Testing for Gasoline Particulate Filter Applications

2019-04-02
2019-01-0968
With the introduction of a stringent particulate number (PN) limit and real driving emission (RDE) requirements, gasoline particulate filters (GPF) are widely adopted for gasoline engines in Europe and China. The filter collects soot and ash. Like in diesel applications, the collected soot will continuously burn under favorable exhaust conditions. However, at extreme conditions, there could be large amounts of soot build-up, which may induce a highly exothermal event, potentially damaging the filter. Thus, it is important to understand what drives the over-heating in application, and develop counter measures. In this study, an on-vehicle fuel cut (FC) testing procedure was developed. The testing was conducted on two vehicles, one gasoline direct injection (GDI) vehicle and one multiple port injection (MPI) vehicle, with different exhaust systems designs (a close coupled GPF and an under floor GPF) and catalyst coating levels (bare and heavily coated GPFs).
Technical Paper

PN Emission Measurements and Real-Driving-Emissions (RDE) Simulation on China 6 Light-Duty Gasoline Vehicles

2021-04-06
2021-01-0588
As the China 6 light duty vehicle emission regulation is being implemented, PN becomes a challenge for vehicle type-approval emission tests. WLTC has replaced NEDC as the Type-I test cycle on the chassis dynamometer with more dynamic driving events. In addition, on-road RDE test is a challenge to calibrate the engine to meet tailpipe PN emissions because of the nature of the on-road conditions, i.e. varying ambient temperature, driving dynamics, altitude, etc. In response to China 6 requirements, GPF technology has been introduced. In this study, we pulled four China 6 compliant gasoline vehicles for the PN emission survey. The selected vehicles covered typical engine technologies including GDI/MPI with natural aspiration/turbo charger, representing the state of the art of the local engine capability. On one hand, it helps to build insight into the status of China 6 engine emission control technology through WLTC and RTS95 tests.
Technical Paper

Challenges and Solutions to Meeting Eu VII Particle Number Requirements during Aggressive Field Operation

2023-04-11
2023-01-0386
The heavy duty (HD) Eu VII regulations, going into effect starting 2027, has aggressive particle number (PN) emissions limits under extended operating conditions compared to existing Eu VI framework. In addition to the proposed hot-start PN limit of 2.0E+11 #/kWh, which is a >65% reduction vs. Eu VI E, the particle size cut-off is being extended from 23nm+ to 10nm+ while also including nearly all field operating conditions such as regeneration events, wider ambient boundaries etc. The tighter limits coupled with a work-based window approach to evaluate emissions is driving the need for the next generation of ultra-high filtration efficiency (FE), diesel particulate filter (DPF) technologies. The current study evaluates the FE performance of different DPF solutions under development, over a range of challenging on-road conditions characterized by frequent high temperature events which are not actively triggered.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

Gasoline Particulate Filter Applications for Plug-In Hybrid and Traditional Cars

2020-04-14
2020-01-1430
Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) are considered as primary paths in China to meet corporate average fuel consumption (CAFC) credit and new energy vehicle (NEV) credit regulations. Many local original equipment manufacturers (OEMs) develop PHEVs based on their internal combustion engine (ICE) base models without significant modification on engine side. Traditional ICE vehicles are solely driven by engines, while PHEVs can be driven by engine or electric motors, independently or together, depending on powertrain architecture and operating strategy. PHEVs may have more particle number or particulate matter (PN/PM) emissions. To meet CN6 regulation, gasoline particulate filters (GPFs) are widely used for both PHEV and traditional cars. It is important to investigate the impacts of hybrid powertrain on gasoline particulate filter applications.
X