Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Braking Behaviour in Emergencies

1995-02-01
950969
Emergency situations rarely occur in a driver's experience and the braking and steering manoeuvres that are then required are usually outside the routine physical behaviour ranges. Immediate reactions are automatic and are therefore unlikely to include physical movements that go beyond these limits. It has always been difficult, however, to prove this because simulators could not create total realism, accident studies do not show brake pedal behaviour and realistic experiments are unethical and dangerous. This paper reviews what is known about driver braking behaviour together with accident studies. Experiments performed by Lucas are described in which pseudo-realistic accident situations are created and braking behaviour modelled.
Technical Paper

The Effect of An Acoustic Startling Warning On Take-Over Reaction Time And Trunk Kinematics for Drivers in Autonomous Driving Scenarios

2020-03-31
2019-22-0022
The Acoustic Startling Pre-stimulus (ASPS, i.e. a loud sound preceding a physical perturbation) was previously found to accelerate action execution in simple flexion exercises. Therefore in this study we examined if ASPS can accelerate take-over reaction times in restrained teen and adult drivers who were asked to reach for the steering wheel while experiencing sled lateral perturbations simulating a vehicle swerve. Results showed that adult drivers lift their hands toward the steering wheel faster with the ASPS versus without (161 ± 23 ms vs 216 ± 27 ms, p<0.003). However this effect was not found in teens or in trials where the drivers were engaged in a secondary task. Adults also showed reduced lateral trunk displacement out of the seat belt with the ASPS. The ASPS could represent a novel warning that reduces take over time and out-of-position movements in critical autonomous driving scenarios.
X