Refine Your Search

Topic

Search Results

Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Characterization of Flows in the Sac Chamber and the Discharge Hole of a D.I. Diesel Injection Nozzle by Using a Transparent Model Nozzle

1997-10-01
972942
The internal flow of a diesel injection nozzle was studied by using transparent model nozzles to clarify the effects of the flows in the sac chamber and the discharge hole on the spray behaviors. The geometry of the model nozzle was scaled up 10 times the actual nozzle and the injection pressure for the model nozzle was adjusted so as to achieve a Reynolds number at the discharge hole which was the same as an actual nozzle. Aluminium oxide (Al2O3) tracers were used to visualize the flow patterns in the sac chamber. Sequential photographs of the internal flow and the issuing spray plume during the opening process of the needle valve were taken by a high-speed video camera. By locating the discharge hole on the upper side of the sac chamber, the turbulence intensity in the sac chamber increases and the spread angle of the spray plume becomes large.
Technical Paper

Spray and Mixture Properties of Hole-Type Injector for D. I. Gasoline Engine-Comparison of Experiment and CFD Simulation-

2007-07-23
2007-01-1850
An experimental and numerical study was conducted on the spray and mixture properties of a hole-type injector for direct injection (D. I.) gasoline engines. The Laser Absorption Scattering (LAS) technique was adopted to simultaneously measure the spatial concentration distributions and the mass of the liquid and vapor phases in the fuel spray injected into a high-pressure and high-temperature constant volume vessel. The experimental results were compared to the numerical calculation results using three-dimensional CFD and the multi-objective optimization. In the numerical simulation, the design variable of the spray model was optimized by choosing spray tip penetration, and mass of liquid and vapor phases as objective functions.
Technical Paper

Development and Use of a Vehicle Powertrain Simulation for Fuel Economy and Performance Studies

1990-02-01
900619
A personal computer-based vehicle powertrain simulation (VPS) is developed to predict fuel economy and performance. This paper summarizes the governing equations used in the model. Then the different simulation techniques are described with emphasis on the more complicated time-dependent simulation. The simulation is validated against constant speed and variable cycle test track data obtained for a 5 ton army truck. Then the simulation is used to compare the performance of the 5 ton truck when powered by a cooled and natually aspirated engine, a cooled and turbocharged engine, and an uncooled and turbocharged engine. Studies of the effect of payload, tire efficiency, and drag coefficient on vehicle performance are also conducted, as well as a performance comparison between manual and automatic transmissions. It is concluded that the VPS code can provide good predictions of vehicle fuel economy, and thus is a useful tool in designing and evaluating vehicle powertrains.
Technical Paper

Flame Propagation Characteristics in a Heterogeneous Concentration Distribution of a Fuel-Air Mixture

1998-10-19
982563
An experimental study was conducted to investigate the flame propagation characteristics in the presence of a heterogeneous concentration distribution of a fuel-air mixture in order to provide fundamental knowledge of the effects of gaseous mixture concentration heterogeneity on the combustion process. Different propane-air mixture distributions were produced by the reciprocating movements of a pair of perforated plates in a constant volume combustion chamber. The mean equivalence ratio of the fuel-air mixture was varied from 0.7 on the lean side to 1.6 on the rich side, the turbulence intensity in the combustion chamber was also varied at levels of 0.185 m/s, 0.130 m/s, 0.100 m/s, and 0.0 m/s. By an independent control of the mixture distribution and the turbulence intensity in the combustion chamber, the flame structure and flame propagation speed at various heterogeneous levels of the mixture distribution were investigated in detail.
Technical Paper

Development of an In-Cylinder Heat Transfer Model with Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation

2009-04-20
2009-01-0702
In-cylinder heat transfer has strong effects on engine performance and emissions and heat transfer modeling is closely related to the physics of the thermal boundary layer, especially the effects of conductivity and Prandtl number inside the thermal boundary layer. Compressibility effects on the thermal boundary layer are important issues in multi-dimensional in-cylinder heat transfer modeling. Nevertheless, the compressibility effects on kinematic viscosity and the variation of turbulent Prandtl number and eddy viscosity ratio have not been thoroughly investigated. In this study, an in-cylinder heat transfer model is developed by introducing compressibility effects on turbulent Prandtl number, eddy viscosity ratio and kinematic viscosity variation with a power-law approximation. This new heat transfer model is implemented to a spark-ignition engine with a coherent flamelet turbulent combustion model and the RNG k- turbulence model.
Technical Paper

Computational Investigation of the Stratification Effects on DI/HCCI Engine Combustion at Low Load Conditions

2009-11-02
2009-01-2703
A numerical study has been conducted to investigate possible extension of the low load limit of the HCCI operating range by charge stratification using direct injection. A wide range of SOI timings at a low load HCCI engine operating condition were numerically examined to investigate the effect of DI. A multidimensional CFD code KIVA3v with a turbulent combustion model based on a modified flamelet approach was used for the numerical study. The CFD code was validated against experimental data by comparing pressure traces at different SOI’s. A parametric study on the effect of SOI on combustion has been carried out using the validated code. Two parameters, the combustion efficiency and CO emissions, were chosen to examine the effect of SOI on combustion, which showed good agreement between numerical results and experiments. Analysis of the in-cylinder flow field was carried out to identify the source of CO emissions at various SOI’s.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Breakup Process of an Initial Spray Injected by a D.I. Gasoline Injector-Simultaneous Measurement of Droplet Size and Velocity by Laser Sheet Image Processing and Particle Tracking Technique

2003-10-27
2003-01-3107
The breakup and atomization processes of the pre-swirl spray, which is produced before the hollow-cone spray from a high-pressure swirl-type D.I. gasoline injector, were investigated under different ambient pressure conditions. The injector has a press-fitted swirl tip, in which six tangential slots giving the injecting fuel an angular momentum are perforated at an equal space interval. A microscopic imaging technique was applied to get the spatially high-resolution LIF tomograms of the pre-swirl spray. The sprays were illuminated by an Nd:YAG laser light sheet and imaged using a high resolution CCD camera, fixed with a micro lens and coupled with an optical low-pass filter. The droplet size and the individual droplet's velocity were obtained by applying the image processing and the particle tracking techniques, respectively.
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Quantitative Measurement of Liquid and Vapor Phase Concentration Distributions in a D.I. Gasoline Spray by the Laser Absorption Scattering (LAS) Technique

2002-05-06
2002-01-1644
To get quantitative measurements of liquid and vapor phase concentration distributions in a gasoline spray, a laser-based absorption and scattering (LAS) technique was developed. The LAS technique adopts ultraviolet and visible lasers as light sources and a test fuel, which absorbs the ultraviolet light but does not absorb the visible light, instead of gasoline. The LAS principle is based on the incident light extinction in the ultraviolet band due to both vapor absorption and droplets scattering, whereas in the visible band, the incident light extinction is due only to the droplet scattering. The absorption spectra and molar absorption coefficients of the candidate test fuels including p-xylene, benzene and toluene, all of which have physical properties similar to gasoline, were investigated, and p-xylene was finally selected as a test fuel. Measurement accuracy of the LAS technique was discussed.
Technical Paper

Characterization of Mixture Formation in Split-Injection Diesel Sprays via Laser Absorption-Scattering (LAS) Technique

2001-09-24
2001-01-3498
Experimental results of a diesel engine have shown that using split-injection can reduce the NOx and particulate emissions. For understanding the mechanism of emissions reduction, mixture formation in split-injection diesel sprays was characterized in the present paper. A dual-wavelength laser absorption-scattering (LAS) technique was developed by use of the second harmonic (532nm) and the fourth harmonic (266nm) of a pulsed Nd:YAG laser as the incident light and dimethylnaphthalene (DMN) as the test fuel. By applying this technique, imaging was made of DMN sprays injected into a high-temperature and high-pressure constant volume vessel by a single-hole nozzle incorporated in a common rail injection system for D.I. diesel engine. The line-of-sight optical thickness of both fuel vapor and droplets in the sprays was yielded from the sprays images.
Technical Paper

A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine

2002-03-04
2002-01-0372
In this paper, the available correlations proposed in the literature for the gas-side heat transfer in the intake and exhaust system of a spark-ignition internal combustion engine were surveyed. It was noticed that these only by empirically fitted constants. This similarity provided the impetus for the authors to explore if a universal correlation could be developed. Based on a scaling approach using microscales of turbulence, the authors have fixed the exponential factor on the Reynolds number and thus reduced the number of adjustable coefficients to just one; the latter can be determined from a least squares curve-fit of available experimental data. Using intake and exhaust side data, it was shown that the universal correlation The correlation coefficient of this proposed heat transfer model with all available experimental data is 0.845 for the intake side and 0.800 for the exhaust side.
Technical Paper

An Analysis of Ambient Air Entrainment into Split Injection D.I. Gasoline Spray by LIF-PIV Technique

2002-10-21
2002-01-2662
Effects of split injection, with a relatively short time interval between the two sprays, on the spray development process, and the air entrainment into the spray, were investigated by using laser induced fluorescence and particle image velocimetry (LIF-PIV) techniques. The velocities of the spray and the ambient air were measured. The cumulative mass of the ambient air entrained into the spray was calculated by using the entrainment velocity normal to the spray boundary. The vortex structure of the spray, formed around the leading edge of the spray, showed a true rotating flow motion at low ambient pressures of 0.1 MPa, whereas at 0.4 MPa, it was not a true rotating flow, but a phenomenon of the small droplets separating from the leading edge of the spray and falling behind, due to air resistance. The development processes of the 2nd spray were considerably different from that of the 1st spray because the 2nd spray was injected into the flow fields formed by the 1st spray.
Technical Paper

Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique - Effect of Injection Conditions

2003-05-19
2003-01-1811
Mixture formation processes play a vital role on the performance of a D.I. Gasoline engine. Quantitative measurement of liquid and vapor phase concentration distribution in a D.I. gasoline spray is very important in understanding the mixture formation processes. In this paper, an unique laser absorption scattering (LAS) technique was employed to investigate the mixture formation processes of a fuel spray injected by a D.I. gasoline injector into a high pressure and temperature constant volume vessel. P-xylene, which is quite suitable for the application of the LAS technique, was selected as the test fuel. The temporal variations of the concentration distribution of both the liquid and vapor phases in the spray were quantitatively clarified. Then the effects of injection pressure and quantity on the concentration distributions of both the liquid and vapor phases in the spray were analyzed.
Technical Paper

Transient Diesel Emissions: Analysis of Engine Operation During a Tip-In

2006-04-03
2006-01-1151
This study investigates the impact of transient engine operation on the emissions formed during a tip-in procedure. A medium-duty production V-8 diesel engine is used to conduct experiments in which the rate of pedal position change is varied. Highly-dynamic emissions instrumentation is implemented to provide real-time measurement of NOx and particulate. Engine subsystems are analyzed to understand their role in emissions formation. As the rate of pedal position change increases, the emissions of NOx and particulates are affected dramatically. An instantaneous load increase was found to produce peak NOx values 1.8 times higher and peak particulate concentrations an order of magnitude above levels corresponding to a five-second ramp-up. The results provide insight into relationship between driver aggressiveness and diesel emissions applicable to development of drive-by-wire systems. In addition, they provide direct guidance for devising low-emission strategies for hybrid vehicles.
Technical Paper

Optimization of Inlet Port Design in a Uniflow-Scavenged Engine Using a 3-D Turbulent Flow Code

1993-04-01
931181
The finite volume, three-dimensional, turbulent flow code ARIS-3D is applied to the study of the complex flow field through the inlet port and within the cylinder of a uniflow-scavenged engine. The multiblock domain decomposition technique is used to accommodate this complex geometry. In this technique, the domain is decomposed into two blocks, one block being the cylinder and the other being the inlet duct. The effects of inlet duct length, geometric port swirl angle, and number of ports on swirl generating capability are explored. Trade-offs between swirl level and inherent pressure drop can thus be identified, and inlet port design can be optimized.
Technical Paper

The Potential of the Variable Stroke Spark-Ignition Engine

1997-02-24
970067
A comprehensive quasi-dimensional computer simulation of the spark-ignition (SI) engine was used to explore part-load, fuel economy benefits of the Variable Stroke Engine (VSE) compared to the conventional throttled engine. First it was shown that varying stroke can replace conventional throttling to control engine load, without changing the engine characteristics. Subsequently, the effects of varying stroke on turbulence, burn rate, heat transfer, and pumping and friction losses were revealed. Finally these relationships were used to explain the behavior of the VSE as stroke is reduced. Under part load operation, it was shown that the VSE concept can improve brake specific fuel consumption by 18% to 21% for speeds ranging from 1500 to 3000 rpm. Further, at part load, NOx was reduced by up to 33%. Overall, this study provides insight into changes in processes within and outside the combustion chamber that cause the benefits and limitations of the VSE concept.
Technical Paper

An Early-Design Methodology for Predicting Transient Fuel Economy and Catalyst-Out Exhaust Emissions

1997-05-19
971838
An early-design methodology for predicting both expected fuel economy and catalyst-out CO, HC and NOx concentrations during arbitrarily-defined transient cycles is presented. The methodology is based on utilizing a vehicle-powertrain model with embedded maps of fully warmed up engine-out performance and emissions, and appropriate temperature-dependent correction factors to account for not fully warmed up conditions during transients. Similarly, engine-out emissions are converted to catalyst-out emissions using conversion efficiencies based on the catalyst brick temperature. A crucial element of the methodology is hence the ability to predict heat flows and component temperatures in the engine and the exhaust system during transients, consistent with the data available during concept definition and early design phases.
X