Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Bi-Directional Evolutionary Structural Optimization for Crashworthiness Structures

2020-04-14
2020-01-0630
Gradient based topology optimization method is difficult used to optimization of crashworthiness structures due to the expensive computational cost of sensitivity analysis and complex nonlinear behaviors (geometric nonlinearity, material nonlinearity and contact nonlinearity) of structures during a collision. Equivalent static loads (ESLs) method is one of the methods for nonlinear dynamic response optimization. However, this method ignores the material nonlinearity. Thus this paper proposes an improved topology optimization method for crashworthiness structure based on a modified ESLs method. A new calculation of ESLs considering material nonlinearity is proposed. The improved ESLs method is employed to transform the nonlinear dynamic response optimization into a nonlinear static response optimization with multiple load cases. Each element in the design domain is assigned with a design variable.
Technical Paper

Dynamic-Static Optimization Design with Uncertain Parameters for Lift Arm of Parking Robot

2020-04-14
2020-01-0511
There are a large number of uncertainties in engineering design, and the accumulated uncertainties will enlarge the overall failure probability of the structure system. Therefore, structural design considering uncertainties has good guiding significance for improving the reliability of engineering structures. To address this issue, the dynamic-static structural topology optimization is established and reliability-based topology optimization with decoupling format is conducted in this study. The design point which satisfying the constraint of the target reliability indicator is obtained according to the reliability indicators of the first-order reliability method, and the uncertain design variables are modified into a deterministic variable according to the sensitivity information.
Technical Paper

Crashworthiness Design of Hierarchical Honeycomb-Filled Structures under Multiple Loading Angles

2020-04-14
2020-01-0504
Thin-walled structures have been widely used in automobile body design because of its good lightweight and superior mechanical properties. For the energy-absorbing box of the automobile, it is necessary to consider its working conditions under the axial and oblique impact. In this paper, a novel hierarchical honeycomb is proposed and used as filler for thin-walled structures. Meanwhile, the crashworthiness performances of the conventional honeycomb-filled and the hierarchical honeycomb-filled thin-walled structures under different impact conditions are systematically studied. The results indicate the energy absorption of the hierarchical honeycomb-filled thin-walled structure is higher than that of the conventional honeycomb-filled thin-walled structure, and the impact angle has significant effects on the energy absorption performance of the hierarchical honeycomb-filled structure.
Technical Paper

Performance Investigation of Series-Parallel Type PHEV Using Virtual Integrated Development Environment

2013-10-14
2013-01-2582
In this study, design procedure and performance of a series-parallel type plug-in hybrid electric vehicle (PHEV) are investigated using the virtual integrated development environment (VIDE). First, the powertrain model of the target PHEV is constructed using the provided component library in the VIDE. Component parameters are determined based on the objective vehicle performance such as the maximum speed, hill climbing ability, acceleration performance etc. In addition, control algorithm and a full car simulator are developed for the target PHEV. The VIDE full car simulator is validated by AVL CRUISE software. Using the VIDE simulator, performance of the PHEV component and mode control algorithm are investigated and modifications on design parameters and mode control algorithm are proposed to improve the fuel economy.
Technical Paper

Crashworthiness Optimization of Hydraulic Excavator Cab Roof Rail and Safety Prediction: Finite Element Analysis and Experimental Validation

2021-04-06
2021-01-0925
Off-road trucks, tractors and earth-moving machines are at high risk of accidents involving falling objects or rollovers. Therefore, these machines need proper protective structures to protect operators. This study investigates the crashworthiness optimization of a hydraulic excavator cab roof rail based on an improved bi-directional evolutionary structural optimization (BESO) method considering two different load cases (a lateral quasi-static load and an impact load from the top of cab, respectively). In the crashworthiness optimization problem, a weighted summation of external works done by the two different load cases is treated as the objective function while the volume of design domain is treated as the constraint. A mutative weight scheme is proposed to stabilize the optimization and balance the two load cases. Finite element (FE) model is established and two prototypes are fabricated based on the optimal design.
Technical Paper

Robust Design Optimization for the Mechanical Claw of Novel Intelligent Sanitation Vehicles

2021-04-06
2021-01-0839
The mechanical claw is an important functional part of intelligent sanitation vehicles. Its performance significantly influences the functional reliability and structural safety of intelligent sanitation vehicles. The load of the trash changes extensively during the work of the mechanical claw. Hence, a comprehensive consideration of structural uncertainty during designing is needed to meet performance requirements. Uncertainty optimization design should be applied to reduce the sensitivity of structural performance to uncertain factors and ensure the robust performance of the mechanical paw structure. In this study, a numerical model of the mechanical claw of novel intelligent sanitation vehicles is established first in SolidWorks, and a finite element model is built by Optistruct. Based on the analysis of uncertain load factors of the mechanical claw, a robust mathematical model of uncertain factors is established by the Gauss-Chebyshev and Smolyak algorithm.
Technical Paper

Analysis of Discretization for Transient Impact Loads on Door Closing

2021-04-06
2021-01-0799
The transient impact load generated by door closing is used as the input of the closing condition, which is an important part of door system investigation. In this article, the basic theory of transfer path analysis (TPA) is introduced to handle the abnormal vibration of the front-left door with the glass down stall position of a certain vehicle during the closure. The transient impact loads are discretized under the closed door and obtained using the inverse matrix (IM) method in TPA. Vehicle test and bench test are conducted. The closed door is subjected to the transient impact loads of the sealing strip and the latch on the body side. In the vehicle test, acceleration sensors are pasted on the target point and the reference point on the door to obtain the acceleration vibration response upon the door closure.
Technical Paper

Simulation and Experimental Study on the Thermal Load of the Passenger Compartment

2020-12-14
2020-01-5120
The determination of the thermal load of the passenger compartment is the premise and key of the air conditioning system design. There is a difference between the vehicle thermal load obtained from the conventional theoretical calculation and simulation analysis and the actual thermal load, and the difference is not easy to quantify. The experimental research is based on the steady-state research under the state of heat balance, which cannot meet the development demand for the prediction of vehicle cooling performance. In this paper, the method of one-dimensional simulation and three-dimensional CFD analysis is used to analyze the transient change of the temperature in the passenger compartment, and the thermal load model of an SUV is calibrated through a real vehicle test.
Technical Paper

NVH Features and Corresponding Control Strategies for Differing Architecture Hybrid Vehicle Facing Specific Driving Scenarios

2023-05-08
2023-01-1098
Hybrid vehicle, equipped power source not only gas engine but also motor, power electronics and differing types of transmissions, manifests more complicated/specific/exceptional NVH behaviors than that of gas powered vehicle, like parking engine start/stop for charging, EV mode traction/recuperation, mode switch, etc. On top of that, differing hybrid architecture exists, depending on number and location of motor and type of transmission, hence NVH features and related control strategies are highly likely to be different even under identical driving scenarios, as such, the holistic and deep insight into the NVH features and related control strategies are very meaningful for hybrid vehicle NVH performance refinement, and will expedite the process of vehicle NVH development.
Journal Article

The Control Strategy for 4WD Hybrid Vehicle Based on Wavelet Transform

2021-04-06
2021-01-0785
In this paper, in order to avoid the frequent switching of engine operating points and improve the fuel economy during driving, this paper proposes a control strategy for the 4-wheel drive (4WD) hybrid vehicle based on wavelet transform. First of all, the system configuration and the original control strategy of the 4WD hybrid vehicle were introduced and analyzed, which summarized the shortcomings of this control strategy. Then, based on the analyze of the original control strategy, the wavelet transform was used to overcome its weaknesses. By taking advantage over the superiority of the wavelet transform method in multi signal disposition, the demand power of vehicle was decomposed into the stable drive power and the instantaneous response power, which were distributed to engine and electric motor respectively. This process was carried out under different driving modes.
X