Refine Your Search

Topic

null

Search Results

Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

An Electric Traction Platform for Military Vehicles

2004-03-08
2004-01-1583
This paper shall present the design and development of a family of high power, high-speed transport and combat vehicles based on a common module. The system looks to maximize performance at both high-speed operation and low-speed, heavy/severe-duty operation. All-wheel drive/steer-by-wire autonomous traction modules provide the basis for the vehicle family. Each module can continuously develop 300-400 kW of power at the wheels and has nearly double peak capability, exploiting the flexibility of the electric traction system. The maximum starting tractive effort developed by one module can reach 10-15 tons, and the full rated power can be produced at speeds of 100 mph. This paper will present the design and layout of the autonomous modules. Details will be provided about the tandem electric axles, with electric differentials and independent steering.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Technical Paper

New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control

2003-03-03
2003-01-1322
This paper introduces a new nonlinear model for simulating the dynamics of pneumatic-over-mechanical commercial vehicle braking systems. The model employs an effective systems approach to accurately reproduce forcing functions experienced at the hubs of heavy commercial vehicles under braking. The model, which includes an on-off type ABS controller, was developed to accurately simulate the steer, drive, and trailer axle drum (or disc) brakes on modern heavy commercial vehicles. This model includes parameters for the pneumatic brake control and operating systems, a 4s/4m (four sensor, four modulator) ABS controller for the tractor, and a 2s/2m ABS controller for the trailer. The dynamics of the pneumatic control (treadle system) are also modeled. Finally, simulation results are compared to experimental data for a variety of conditions.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

Intelligent Control of Hybrid Vehicles Using Neural Networks and Fuzzy Logic

1998-02-23
981061
This paper discusses the use of intelligent control techniques for the control of a parallel hybrid electric vehicle powertrain. Artificial neural networks and fuzzy logic are used to implement a load leveling strategy. The resulting vehicle control unit, a supervisory controller, coordinates the powertrain components. The presented controller has the ability to adapt to different drivers and driving cycles. This allows a control strategy which includes both fuel-economy and performance modes. The strategy was implemented on the Ohio State University FutureCar.
Technical Paper

Estimate of IC Engine Torque from Measurement of Crankshaft Angular Position

1993-09-01
932410
Crankshaft angular position measurements are fundamental to all modern automotive engines. These measurements are required to control fuel injection timing as well as ignition timing. However, many other functions can be performed from such measurements through the use of advanced signal processing. These additional functions are essentially diagnostic in nature although there is potential for substitution of primary fuel and ignition control functions. This paper illustrates the application of crankshaft angular position measurement to the estimation of individual cylinder indicated and/or brake torque in IC engines from measurement of crankshaft position/velocity.
Technical Paper

A Survey of Automotive Diagnostic Equipment and Procedures

1993-03-01
930769
The introduction of advanced electronic controls in passenger vehicles over the last decade has made traditional diagnostic methods inadequate to satisfy on- and off-board diagnostic needs. Due to the complexity of today's automotive control systems, it is imperative that appropriate diagnostic tools be developed that are capable of satisfying current and projected service and on-board requirements. The performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. It is our contention that significant improvement is possible in these areas. This paper briefly summarizes the evolution of on- and off-board diagnostic tools documented in the published literature, with the aim of giving the reader an understanding of their capabilities and limitations, and it further proposes alternative solutions that may be adopted as a basis for an advanced diagnostic instrument.
Technical Paper

Methods for Internal Combustion Engine Feedback Control During Cold-Start

1995-02-01
950842
Legislation pertaining to automobile emissions has caused an increased focus on the cold-start performance of internal combustion engines. Of particular concern is the period of time before all available sensors become active. Present engine control strategies must rely on methods other than feedback control while these sensors are not active. Without feedback control during this critical period, engine emissions performance is not optimized. These conditions cause difficulty in performing comprehensive cold-start experiments. For these reasons, we have developed several methods for feedback control during cold-start to aid in laboratory investigations of engine emissions phenomena.
Technical Paper

On-Line Estimation of Indicated Torque in IC Engines Using Nonlinear Observers

1995-02-01
950840
An approach to fault diagnosis for internal combustion engines is considered. It is based on the estimation of cylinder indicated torque by means of sliding mode observers. Instead of measuring indicated pressure in cylinders directly, crankshaft speed is measured as the input of observers, which estimate the indicated torque. Several engine models are considered with different levels of complexity. The indicated torque estimation using sliding mode observers is based on the equivalent control method. The estimation technique is validated experimently on a research engine.
Technical Paper

Detection of Partial Misfire in IC Engines Using a Measurement of Crankshaft Angular Velocity

1995-02-01
951070
In recent years considerable interest has been placed on the detection of engine misfire. As part of the California Air Resources Board on-board diagnostics regulations for 1994 model year vehicles, misfire should be monitored continuously by the engine diagnostic system. It is expected that the next generation of on-board diagnostics regulations will demand monitoring of partial misfire as well. Several solutions to the misfire detection problem have been proposed and demonstrated for the detection of complete misfires. However, the performance of these methods in the presence of partial misfire is not altogether clear. The aim of this paper is to evaluate the performance of various misfire detection indices, all based on a measurement of crankshaft angular velocity, in the presence of partial misfire. The proposed algorithms are compared to a standard based on a measurement of indicated pressure.
Technical Paper

Misfire Detection in a High-Performance Engine by the Principal Component Analysis Approach

1996-02-01
960622
The aim of this paper is to present the application of some signal processing and statistical analysis methods to the problem of detecting and isolating misfire occurrences in a twelve-cylinder high-performance engine. The method employed in this work is based on a measurement of engine angular velocity, processed in the frequency domain to extract a number of spectral components that are shown to be strongly affected by misfire events. These spectral components are then subject to a procedure known as Principal Components Analysis, in which the principal features of the angular speed waveform are extracted to generate individual cylinder misfire signatures. A clustering method is then implemented to permit the isolation of the cylinder responsible for the misfire. The paper briefly reviews the signal analysis method and presents experimental results supporting the validity of the approach.
Technical Paper

Motorsports in the Engineering Curriculum at The Ohio State University

1996-12-01
962498
This paper describes the background and development of a program focused on motorsports engineering education currently in progress at the Ohio State University (OSU). An interdisciplinary curriculum, with the involvement of various engineering departments, is being proposed for development in an attempt to address some of the engineering education needs of the motorsports industry. The program described in this paper strives to provide engineering students with an interdisciplinary background race engineering, and also provides opportunities for motorsports oriented thesis projects. The paper briefly summarizes the key elements of the curriculum, and describes how the integration of course material from different disciplines with team work on student competition projects, possibly coupled with internships with racing teams, can provide an ideal setting for the education of a new generation of race engineers.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
X