Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Safe and Secure Software Updates Over The Air for Electronic Brake Control Systems

2016-09-18
2016-01-1145
Vehicle manufacturers are suffering from increasing expenses for fixing software issues. This fact is mainly driving their desire to use mobile communication channels for doing Software Updates Over The Air (SOTA). Software updates today are typically done at vehicle service stations by connecting the vehicles’ electronic network via the On Board Diagnostic (OBD) interface to a service computer. These operations are done under the control of trained technicians. SOTA means that the update process must get handled by the driver. Two critical aspects need to get considered when doing SOTA at Electronic Brake Control (EBC) systems. Both will determine the acceptance of SOTA by legal authorities and by the passengers: The safety and security of the vehicle The availability of the vehicle for the passengers The security aspect includes the necessity to protect the vehicle and the manufacturers IP from unwanted attacks.
Journal Article

Postural Comfort Inside a Car: Development of an Innovative Model to Evaluate the Discomfort Level

2009-04-20
2009-01-1163
How can car designers evaluate device’s position inside a car today? Today only subjective tests or “reachability” tests are made to assess if a generic user is able to reach devices, but it’s no longer enough. The aim of this study is to identify an instrument (index) that is able to provide a numerical information about the discomfort level connected with a posture that is kept inside a car to reach a device, by this instrument it should be possible not only judge a posture, but also compare different solutions and get rapid and accurate evaluations. In the state of the art there are many indexes developed to evaluate postural comfort (like RULA, REBA and LUBA [3, 4, 5]) but none of them has been realized to evaluate postures’ conditions that can be detected inside a car, so their evaluations cannot be acceptable.
Journal Article

Treasuri2/FE: A Tool for the FE Simulation of Sound Package Parts Fully Integrated in Nastran

2009-05-19
2009-01-2216
Porous materials are extensively used in the construction of automotive sound package parts, due to their intrinsic capability of dissipating energy through different mechanisms. The issue related to the optimization of sound package parts (in terms of weight, cost, performances) has led to the need of models suitable for the analysis of porous materials' dynamical behavior and for this, along the years, several analytical and numerical models were proposed, all based on the system of equations initially developed by Biot. In particular, since about 10 years, FE implementations of Biot's system of equations have been available in commercial software programs but their application to sound package parts has been limited to a few isolated cases. This is due, partially at least, to the difficulty of smoothly integrating this type of analyses into the virtual NVH vehicle development.
Journal Article

Main Design Factors and Unified Software Structure for Cable Puller and Caliper Integrated Type Electric Parking Brakes

2009-10-11
2009-01-3022
The main classification of Electric Parking Brakes (EPB) can be made into cable puller and caliper integrated types. In this paper, the main design considerations that need to be made for each type of system will be examined. In terms of mechanical design, actuator design factors including target capacity, system size, and vehicle mounting will be briefly discussed. In terms of software, a unified software structure that can incorporate both types of EPBs will be introduced. This unified approach, made up of fixed and variable modules, allows for more efficient software development for both types of EPB systems. The fixed modules are related to the identical target functions regardless of EPB type, while the variable modules are made up of the different considerations that need to be made depending on the EPB type in order to meet such targets. Finally, some test results of target functions for both types of EPB systems will be given.
Journal Article

Verification and Validation According to IEC 61508: A Workflow to Facilitate the Development of High-Integrity Applications

2009-10-06
2009-01-2929
Model-Based Design with production code generation has been extensively utilized throughout the automotive software engineering community because of its ability to address complexity, productivity, and quality challenges. With new applications such as lane departure warning or electromechanical steering, engineers have begun to consider Model-Based Design to develop embedded software for applications that need to comply with safety standards such as IEC 61508. For in-vehicle applications, IEC 61508 is often considered state-of-the-art or generally accepted rules of technology (GART) for development of high-integrity software [6, 11]. In order to demonstrate standards compliance, the objectives and recommendations outlined in IEC 61508-3 [8] must be mapped onto processes and tools for Model-Based Design. This paper discusses a verification and validation workflow for developing in-vehicle software components which need to comply with IEC 61508-3 using Model-Based Design.
Journal Article

Assembly Simulation of Riveting Process

2009-11-10
2009-01-3215
The presented paper introduces the new software complex aimed at simulation of the riveting process as applied to aircraft parts. The software complex implements the novel mathematical model based on minimization of the potential energy. The paper gives the detailed description of the mathematical model and particularizes the main features of the software. The physical and numerical tests aimed at validation of the software are also described in the paper.
Journal Article

Proof-Based Engineering of Real-Time Applications: An RTEdge™ Case Study

2009-11-10
2009-01-3232
Edgewater's RTEdge™ Platform toolset is a model driven development environment for mission critical real-time systems. Using precise execution semantics and mathematical proof-based analysis, RTEdge™ enables the verification of critical properties of systems with high assurance. This case study will follow the design and implementation life-cycle of a system representing a real-world, mission critical domain: airborne electronic warfare. Using examples and constraints taken from this system, software components will be built to illustrate the principles of architectural conformance, timeliness and testing as executed within a static analysis framework. Using RTEdge™ as an example, this case study will introduce the concepts of model driven development in software and demonstrate how static analysis can be used to verify characteristics of a system that are traditionally left for later stages of development.
Journal Article

Improving the Supply Chain by Sharing Intelligent Technical Data Packages

2009-11-10
2009-01-3137
For many suppliers in the aerospace value chain, business commences when the customer shares the Technical Data Package (TDP) that defines the detailed requirements for a specific part. To convert the customer TDP into the necessary internal documentation, suppliers must expend large amounts of effort. This generally involves passing along copies of the TDP to each functional discipline, which not only results in redundant and laborious work, but it introduces technical risk. There are now software tools available that enable an intelligent TDP that provides more value than just sharing a 3D CAD model. These tools electronically organize and integrate all elements of the TDP independent of the PLM software in use. The application of the intelligent TDP has enabled a 30% reduction in supply chain inefficiencies.
Journal Article

Managing Aircraft Simulation Requirements with Content-Based Image Retrieval

2009-11-10
2009-01-3149
Requirements analysis for aircraft simulators is often driven by photographs and videos of the actual aircraft. An engineer may gather and organize hundreds or even thousands of source photos of various instruments and devices unique to the aircraft. Managing all of this source information and referencing it to generate software requirements can be challenging and time-consuming. This paper explores Content Based Image Retrieval (CBIR) techniques to automatically process and search those images to generate basic requirements and to facilitate reuse. An unsupervised clustering algorithm groups source images based on minimal user input. Images processed in this way can also be queried by image similarity, thereby allowing project managers to find common source material among projects. The effectiveness of these techniques is demonstrated on an example cockpit.
Journal Article

Off-road Emission Performance of SUV with Diesel and Natural Gas Powertrain

2009-09-13
2009-24-0144
This study is based on a project which addresses the reduction of CO2 and pollutant emissions of off-road vehicles. For this purpose the use of CNG drive trains in high alpine areas is an interesting alternative to the standard diesel technology. The same SUV with CNG and diesel powertrain has been measured and methodically compared with regard to fuel consumption and exhaust emission performance. These real-world measurements have shown the potential when applying a CNG concept for this utilization. Subsequently, the real-world on-board measurements were compared with the results of a simulation program for SUV off-road performance.
Journal Article

Ford SYNC and Microsoft Windows Embedded Automotive Make Digital Lifestyle a Reality on the Road

2010-10-19
2010-01-2319
With Ford SYNC, Microsoft Corporation and Ford Motor Company have democratized in-vehicle infotainment systems - delighting consumers and bringing a new kind of agility to the automobile industry. Built on Microsoft Auto (now Windows Embedded Automotive), Ford SYNC is a factory-installed, voice-controlled communications and entertainment system that allows drivers to converge their digital lifestyle with their life on the road. Windows Embedded Automotive is an industry leading technology platform that provides integrated infotainment features and a rich user interface. Car manufacturers and suppliers worldwide can use this software to create differentiated, infotainment in-vehicle systems that are immediately attractive to consumers.
Journal Article

AUTOSAR as a Key Enabler for Collaborative Product Development

2010-10-19
2010-01-2341
Whether it be in highly visible features like fascinating new infotainment systems or hidden behind the scenes in complex new hybrid powertrain controls, in-vehicle software is rapidly changing the way the automotive industry engages its vehicle-buying customers. In every application where a compelling new electronic solution is emerging, it is enabled by the convergence of in-vehicle software developed by different collaborating partners. As more and more component suppliers, vehicle OEMs, and technology vendors enter into collaborative software development projects with each other, a new set of technical and business challenges are showing collaborative software development to be a very distinctive proposition than traditional stand-alone development.
Journal Article

Model-Based Design Case Study: Low Cost Audio Head Unit

2011-04-12
2011-01-0052
The use of model-based software development in automotive applications has increased in recent years. Current vehicles contain millions of lines of code, and millions of dollars are spent each year fixing software issues. Most new features are software controlled and many times include distributed functionality, resulting in increased vehicle software content and accelerated complexity. To handle rapid change, OEMs and suppliers must work together to accelerate software development and testing. As development processes adapt to meet this challenge, model-based design can provide a solution. Model-based design is a broad development approach that is applied to a variety of applications in various industries. This paper reviews a project using the MATLAB/Simulink/Stateflow environment to complete a functional model of a low cost radio.
Journal Article

Use of AUTOSAR Framework to Assist Software Field Programming

2010-04-12
2010-01-0671
Field reprogramming of electronic control units (ECU) via the serial communication bus for feature upgrades, software fixes is an area which has potential cost impacts to the OEMs. Due to increasing software complexity, feature content, up-integration considerations for ECUs in next generation vehicle platforms the expectation is for flash memory requirements to increase significantly in the future. A reduced reprogramming cycle that builds on top of the existing system framework would be of interest from a cost and timing aspects. Additionally deployment of the next generation of telematics based remote programming techniques would also benefit from shorter reprogramming time in ECUs. An approach to address field reprogramming time would be to migrate to high baud rate communication protocols like FlexRay or Ethernet from the traditional CAN based systems currently in use.
Journal Article

Detect the Imperceptible Drowsiness

2010-04-12
2010-01-0746
Prediction of drowsiness based on an objective measure is demanded in machine and vehicle operations, in which human error may cause fatal accidents. Recently, we focused on the pupil which is controlled by the autonomic nervous system, easily and non-invasively observable from the outside of the body. Prior to the large low frequency pupil-diameter fluctuation, which is known to associate with drowsiness, a Gradual Miosis was observed in most subjects. During this miosis period, the subjects were not yet aware of their drowsiness. We have developed a software system which automatically detects the Gradual Miosis in real time.
Journal Article

Method to Design Honeycombs for a Shear Flexible Structure

2010-04-12
2010-01-0762
Conventional geometric parameters of honeycombs (cell height, h, cell length, l, and cell angle, θ) have been used to find effective properties of honeycomb structures. However, these parameters appear to be difficult to control both a target shear stiffness (4 to 4.5 MPa) and a target level of shear strain (~10%) because the parameters are coupled to each other within a constant design space. A method to design hexagonal honeycombs is derived to design for both shear stiffness and shear flexibility independently by replacing the conventional geometric parameters with two new parameters; effective height, R, and horizontal separation, d. A parametric study with commercial software, ABAQUS, is conducted using the two new parameters to investigate their affects on in-plane effective shear stiffness, G₁₂*, and maximum shear strain, (γ₁₂*)max of polycarbonate honeycombs under a fixed overall honeycomb height of 12.7 mm (0.5 in).
Journal Article

Helical 3D Computed Tomography as an Advanced Inline NDT Method

2010-04-12
2010-01-0953
Computed Tomography (CT) is a well established method for non-destructive reconstruction of an object's interior structures. It is especially well suited for use with e.g. light metal alloys, injection molded plastic components or composite materials. The CT volume data can either be evaluated manually or automatically through the use of image processing software. Recently helical CT has become available for use in industrial quality testing of light alloy cast parts. This paper discusses the use of helical CT as an additional tool for inline inspection in a production environment.
Journal Article

Timing Implications of Sharing Resources in Multicore Real-Time Automotive Systems

2010-04-12
2010-01-0454
The topic of timing has already been recognized as a major challenge when designing safety-critical automotive architectures. Consequently the availability of appropriate performance and timing analysis methods is key to building reliable automotive electric and electronics (E/E) and software architectures. Due to the potential performance increase, power reduction and cost-efficiency multicore solutions for automotive real-time environments receive growing attention. But the prediction of the timing behavior for multicore electronic control unit (ECU) systems becomes more complicated. Even in setups with static task-to-processor mapping, the execution of the tasks is usually not independent. The use of the same physical hardware, such as memories, coprocessors, or network components, makes inter-core interference unavoidable and may introduce hard-to-find timing problems including missed deadlines that can finally make the entire system fail.
Journal Article

Understanding Measured Spindle Loads Differences with Advanced Tire Model

2010-04-12
2010-01-0378
In this study, a full vehicle with advanced LMS comfort and durability tire (CDT) model was established with ADAMS software to predict the spindle loads of the vehicle under a severe proving ground rough road event. From a series of simulations with various design changes, the spindle loads sensitivities to those design changes were identified. The simulated results were also compared with the measured data and a good correlation was achieved.
Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
X