Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Handling and Ride Performance Sensitivity Analysis for a Truck-Trailer Combination

2010-04-12
2010-01-0642
A truck-trailer combination is modeled using ADAMS/Car from MSC Software for handling and ride comfort performance simulations. The handling events include a double lane change and lateral roll stability. The ride comfort performance events include several sized half-rounds and various RMS courses. The variables for handling performance evaluation include lateral acceleration, roll angles and tire patch normal loads. The variables for ride performance evaluation are absorbed power and peak acceleration. This study considers the trailer spring stiffness, anti-roll bar and jounce bumper gap as the design variables. Through DOE simulations, we derived the response surface models of various performance variables so that we could consider the performance sensitivities to the design variables.
Journal Article

Understanding Measured Spindle Loads Differences with Advanced Tire Model

2010-04-12
2010-01-0378
In this study, a full vehicle with advanced LMS comfort and durability tire (CDT) model was established with ADAMS software to predict the spindle loads of the vehicle under a severe proving ground rough road event. From a series of simulations with various design changes, the spindle loads sensitivities to those design changes were identified. The simulated results were also compared with the measured data and a good correlation was achieved.
Journal Article

Tire Model Application and Parameter Identification-A Literature Review

2014-04-01
2014-01-0872
A tire may be one of the most critical and complex components in vehicle dynamics and road loads analyses because it serves as the only interface between the road surface and the vehicle. Extensive research and development activities about vehicle dynamics and tire models have been published in the past decades, but it is still not clear about the applications and parameter identification associated with all of these tire models. In this literature review study, various published tire models used for vehicle dynamics and road loads analyses are compared in terms of their modeling approaches, applications and parameters identification process and methodologies. It is hoped that the summary of this literature review work can help clarify and guide the future research and development direction about tire modeling.
Journal Article

Impact of Driver's Steer Control on Truck-Trailer Combination when Negotiating NATO Double Lane Change Maneuver

2013-04-08
2013-01-0404
In this study, a closed-loop driver-truck-trailer system model is established with ADAMS/Car. A double lane change maneuver (DLCM) path boundary is set up based on the NATO AVTP 03-160W requirement. The best driver preview path at a given speed to pass the DLCM is derived from optimization of the closed-loop driver-vehicle-road system, where the objective is to successfully pass the DLCM at the given forward speed. This must be done without violating the maneuver boundary, lifting any tires off the ground, as well as staying within the Driver's steering effort limit. Depending upon the Driver's control strategy, which is reflected by the formulation of the optimal objective, the dynamic responses of the truck-trailer combination will vary. Two extreme conditions are discussed in this study: full and no consideration of trailer, respectively, when negotiating the DLCM.
Technical Paper

Determination of Magic Formula Tyre Model Parameters Using Homotopy Optimization Approach

2020-04-14
2020-01-0763
Tyre behavior plays an important role in vehicle dynamics simulation. The Magic Formula Tyre Model is a semi-empirical tyre model which describes tyre behavior quite accurately in the handling simulation. The Magic Formula Tyre Model needs a set of parameters to describe the tyre properties; the determination of these parameters is nontrivial task due to its nonlinear nature and the presence of a large number of coefficients. In this paper, the homotopy algorithm is applied to the parameter identification of Magic Formula tyre model. A morphing parameter is introduced to correct the optimization process; as a result, the solution is directed converging to the global optimal solution, avoiding the local convergence. The method uses different continuation methods to globally optimize the parameters, which ensures that the prediction of the Magic Formula model can be very close to the test data at all stages of the optimization process.
Technical Paper

In-Plane Parameter Relationship between the 2D and 3D Flexible Ring Tire Models

2017-03-28
2017-01-0414
In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
Technical Paper

Development of an Out-of-Plane Flexible Ring Tire Model Compared with Commercial FTire® Via Virtual Cleat Tests

2018-04-03
2018-01-1120
In this paper, based on our previously preliminary out-of-plane tire model, a complete out-of-plane flexible tire model is further developed by considering the variation of dimension and parameter values among different slices of the tire model. This tire model is validated via various MSC ADAMS® FTire virtual cleat tests. Especially, the cleat tests with non-zero tire camber angles and non-symmetric cleat shapes, which can better capture the out-of-plane tire properties, are included. By comparing the predicted results of the proposed tire model with FTire for various cleat tests, it shows that the complete out-of-plane flexible ring tire model is better at fully representing the actual tire properties for some complicated cleat testing scenarios.
Technical Paper

In-Plane Flexible Ring Tire Model Development for Ride Comfort & Braking/Driving Performance Analysis under Straight-line Driving Condition

2015-04-14
2015-01-0628
Vehicle tire performance is an important consideration for vehicle handling, stability, mobility, and ride comfort as well as durability. Significant efforts have been dedicated to tire modeling in the past, but there is still room to improve its accuracy. In this study, a detailed in-plane flexible ring tire model is proposed, where the tire belt is discretized, and each discrete belt segment is considered as a rigid body attached to a number of parallel tread blocks. The mass of each belt segment is accumulated at its geometric center. To test the proposed in-plane tire model, a full-vehicle model is integrated with the tire model for simulation under a special driving scenario: acceleration from rest for a few seconds, then deceleration for a few seconds on a flat-level road, and finally constant velocity on a rough road. The simulation results indicate that the tire model is able to generate tire/road contact patch forces that yield reasonable vehicle dynamic responses.
X