Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

1987-02-01
2014-01-2828
This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Journal Article

Innovation Trends in the Field of Internal Combustion Engines

2009-06-15
2009-01-1944
One reliable way to measure the research activity in the field of engine technology is through the number of patent applications that are submitted to different patent offices in the world. This paper offers a thorough statistical analysis of the innovation trends related to downsizing in Europe, USA, Japan, China and Korea in the field of internal combustion engines during the last 10 years, as seen by the European Patent Office. It demonstrates which technical fields (e.g. super- and turbocharging, direct fuel injection systems, hybrid technology, variable valve actuation, exhaust gas recirculation, etc.) are the most active, who are the most important players and which country attracts the highest number of applications. Subfields of certain technical fields are also analyzed. The technical fields discussed are chosen according to the International Patent Classification (IPC) scheme.
Journal Article

Current and New Approaches for Brake Noise Evaluation and Rating

2009-10-11
2009-01-3037
Predominant brake noise evaluation and rating was developed many years ago and no longer fulfills the need of modern development work. An extended description of a noisy brake event (European expert group guideline EKB 3006) and a standardized test data exchange format, allowing the comparison of different source test results (EKB 3008) are presented. Today's noise rating systems are described and compared by selected examples. The paper proposes an open 4 level noise rating system (EKB 3007). It starts with simple occurrence statistics, noise rating based on sound levels, situational noise rating including duration and finally based on the human perception, described by psychoacoustics.
Journal Article

Numerical Analysis of Static Behavior in a Three-point Bending Test of Aluminum Foam Sandwich Beams using the Extended Finite Element Method

2009-11-10
2009-01-3210
In this paper, the numerical analysis of a three-point bending test of an aluminum foam sandwich structure is performed with the new extended finite element feature supported by Abaqus 6.9. The sandwich beam consists of two aluminum skins and one aluminum foam core. Three different sets of model dimensions are selected for comparison with the reference results (J. Yu, E. Wang, J. Li, Z. Zheng, “Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending”, International Journal of Impact Engineering, 35, 2008, pp 885-894). Failure modes in this paper can be categorized into three parts: face yield (FY), indentation (IN), and core shear (CS). Face yield occurs on the surface of the core when the thickness of the skin is small. Indentation and core shear occur if the thickness of the skin is relatively large.
Journal Article

Data Mining and Complex Problems: Case Study in Composite Materials

2009-11-10
2009-01-3182
Data mining is defined as the discovery of useful, possibly unexpected, patterns and relationships in data using statistical and non-statistical techniques in order to develop schemes for decision and policy making. Data mining can be used to discover the sources and causes of problems in complex systems. In addition, data mining can support simulation strategies by finding the different constants and parameters to be used in the development of simulation models. This paper introduces a framework for data mining and its application to complex problems. To further explain some of the concepts outlined in this paper, the potential application to the NASA Shuttle Reinforced Carbon-Carbon structures and genetic programming is used as an illustration.
Journal Article

Advanced Electrical Signature Analysis of Aircraft Electrical Generators

2009-11-10
2009-01-3162
The electrical and mechanical failures (such as bearing and winding failures) combine to cause premature failures of the generators, which become a flight safety issue forcing the crew to land as soon as practical. Currently, diagnostic / prognostic technologies are not implemented for aircraft generators where repairs are time consuming and its costs are high. This paper presents the development of feature extraction and diagnostic algorithms to ultimately 1) differentiate between these failure modes and normal aircraft operational modes; and 2) determine the degree of damage of a generator. Electrical signature analysis based features were developed to distinguish between healthy and degraded generators while taking into account their operating conditions. The diagnostic algorithms were developed to have a high fault / high-hour detection rate along with a low false alarm rate.
Journal Article

Development of Hollow Cylindrical Tank with Blow Forming of Titanium Sheets

2009-11-10
2009-01-3259
In this paper, manufacturing hollow cylindrical tank was demonstrated with gas forming of titanium sheets. An innovative gas blow forming method to produce a complex shape of hollow cylindrical tank from titanium multi-sheets by low hydrostatic pressure was presented. Finite element analysis on gas blow forming process has been carried out in order to improve the forming process when manufacturing subscale hollow cylinder structure using Ti-6Al-4V multi-sheets. The simulation focused on the reduction of forming time and obtaining final required shape throughout investigating the deformation mode of sheet according to the forming conditions and die geometry. The result shows that the manufacturing method with gas forming of multi-sheets of titanium alloy has been successful for near net shape forming of subscale hollow cylindrical tank of ramjet engine.
Journal Article

Combination of In-Cylinder Pressure Signal Analysis and CFD Simulation for Knock Detection Purposes

2009-09-13
2009-24-0019
A detailed analysis of knocking events can help improving engine performance and diagnosis strategies. The paper aim is a better understanding of the phenomena involved in knocking combustions through the combination of CFD and signals analysis tools. CFD simulations have been used in order to reproduce knock effect on the in-cylinder pressure trace. In fact, the in-cylinder pressure signal holds information about waves propagation and heat losses: for the sake of the diagnosis it is important to relate knock severity to knock indexes values. For this purpose, a CFD model has been implemented, able to predict the combustion evolution with respect to Spark Advance, from non-knocking up to heavy knocking conditions. The CFD model validation phase is crucial for a correct representation of both regular and knocking combustions: the operation has been carried out by means of an accurate statistical analysis of experimental in-cylinder pressure data.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Journal Article

Drivability Analysis of Heavy Goods Vehicles

2010-10-05
2010-01-1981
The paper presents linear and non-linear driveline models for Heavy Goods Vehicles (HGVs) in order to evaluate the main parameters for optimal tuning, when considering the drivability. The implemented models consider the linear and non-linear driveline dynamics, including the effect of the engine inertia, the clutch damper, the driveshaft, the half-shafts and the tires. Sensitivity analyses are carried out for each driveline component during tip-in maneuvers. The paper also analyses the overall frequency response using Bode diagrams and natural frequencies. It is demonstrated that the most basic model capable of taking into account the first order dynamics of the driveline must consider the moments of inertia of the engine, the transmission and the wheels, the stiffness and the damping properties of the clutch damper, driveshaft and half-shafts, and the tires (which link the wheel to the equivalent inertia of the vehicle).
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Characteristics of Nano-Scale Particulates from Gasoline Turbo-Intercooled Direct-Injection Engine

2010-10-25
2010-01-2197
This study aims to identify the factors that control particulate matter (PM) formation and size distribution in direct-injection spark-ignition (DISI) engines. The test engine used for this research was a 1.6 litre, wall-guided DISI, turbocharged, intercooled, in-line 4 cylinder, Euro IV engine. The exhaust sampling point was before the catalytic converter, i.e. engine-out emissions were measured. The first part of this paper investigates the characteristics of PM number and size distribution of DISI and throttle body injected (TBI) engines. The second part investigates the effect of combustion characteristics of DISI engines on the number of 5nm and 10nm (nucleation) and 200nm (accumulation) PM. A statistical analysis of the coefficient of variance (COV) of the maximum rate of pressure rise (RPmax) over 100 cycles was performed against the COV of 5nm, 10nm and 200nm total particle number.
Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Journal Article

Proof-of-Principle Investigation into the Use of Custom Rapid Aging Procedures to Evaluate and Demonstrate Catalyst Durability

2010-10-25
2010-01-2269
The application of accelerated catalyst aging procedures on an engine dynamometer test bed for the purpose of demonstrating catalyst durability is examined. A proof-of-principle approach is followed using catalysts from vehicles certified to U.S. Tier 2 Bin 4 and California SULEV 2 levels. Accelerated durability demonstration methods based upon conventional fuel cut cycles were employed to age catalysts to levels predicted by quantification of thermal catalyst bed severity on the Standard Road Cycle (SRC) relative to the fuel cut aging cycle using the Bench Aging Time (BAT) equation. Emissions deterioration on the accelerated aging cycle is compared to the automobile manufacturers' certification values and to whole vehicle emissions performance results from several different in-use vehicle fleets. The influence of technology on whole vehicle emissions levels and deterioration characteristics is also evaluated.
Journal Article

Driver Distraction/Overload Research and Engineering: Problems and Solutions

2010-10-19
2010-01-2331
Driver distraction is a topic of considerable interest, with the public debate centering on the use of cell phones and texting while driving. However, the driver distraction/overload issue is really much larger. It concerns specific tasks such as entering destinations on navigation systems, retrieving songs on MP3 players, accessing web pages, checking stocks, editing spreadsheets, and performing other tasks on smart phones, as well as, more generally, using in-vehicle information systems. Five major problems related to distraction/overload research and engineering and their solutions are addressed in this paper.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
X