Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Calibration and Validation of Various Commercial Particle Number Measurement Systems

2009-04-20
2009-01-1115
Measurement of particle number was introduced in the Euro 5/6 light duty vehicle emissions regulation. Although particle number measurement systems have to be calibrated by the manufacturers, labs have to validate the proper operation of their systems within one year of the emissions test. The systems must achieve a >99% reduction of an aerosol containing 30 nm tetracontane (CH3(CH2)38CH3) particles (C40) with an inlet concentration >104 #/cm3. They must also include an initial heated dilution stage with dilution of at least 10 which outputs a diluted sample at a temperature of 150°C–400°C. The system as a whole must achieve a particle number concentration reduction factor for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30% and 20% respectively higher, and no more than 5% lower than that for particles of 100 nm.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

3D Numerical Study of Pressure Loss Characteristics and Soot Leakage Through a Damaged DPF

2009-04-20
2009-01-1267
Diesel Particulate Filters (DPF) are widely used to meet 2007 and beyond EPA Particulate Matter (PM) emissions requirements. During the soot loading process, soot is collected inside a porous wall and eventually forms a soot cake layer on the surface of the DPF inlet channel walls. A densely packaged soot layer and reduced pore size due to Particulate Matter (PM) deposition will reduce overall DPF wall permeability which results in increasing pressure drop across the DPF substrate. A regeneration process needs to be enacted to burn out all the soot collected inside the DPF. Soot mass is not always evenly distributed as the distribution is affected by the flow and temperature distribution at the DPF inlet. As a result, the heat release which is determined by the burn rate is locally dependent. High temperature gradients are often found inside DPF substrate as a result of these locally dependent burn rates.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Aspects of NVH Integration in Hybrid Vehicles

2009-05-19
2009-01-2085
NVH refinement is an important aspect of the powertrain development and vehicle integration process. The depletion of fossil-based fuels and increase in price of gasoline have prompted most vehicle manufacturers to embrace propulsion technologies with varying degrees and types of hybridization. Many different hybrid vehicle systems are either on the market, or under development, even up to all-electric vehicles. Each hybrid vehicle configuration brings unique NVH challenges that result from a variety of sources. This paper begins with an introductory discussion of hybrid propulsion technologies and associated unique vehicle NVH challenges inherent in the operation of such hybrid vehicles. Following this, the paper outlines a two-dimensional landscape of typical customer vehicle maneuvers mapped against hybrid electric vehicle (HEV) operational modes.
Journal Article

Numerical Simulations and Measurements of Mirror-Induced Wind Noise

2009-05-19
2009-01-2236
The high cost and competitive nature of automotive product development necessitates the search for less expensive and faster methods of predicting vehicle performance. Continual improvements in High Performance Computing (HPC) and new computational schemes allow for the digital evaluation of vehicle comfort parameters including wind noise. Recently, the commercially available Computational Fluid Dynamics (CFD) code PowerFlow, was evaluated for its accuracy in predicting wind noise generated by an external automotive tow mirror. This was accomplished by running simulations of several mirror configurations, choosing the quietest mirror based on the predicted performance, prototyping it, and finally, confirming the prediction with noise measurements taken in an aeroacoustic wind tunnel. Two testing methods, beam-forming and direct noise measurements, were employed to correlate the physical data with itself before correlating with simulation.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Development Testing of a High Differential Pressure (HDP) Water Electrolysis Cell Stack for the High Pressure Oxygen Generating Assembly (HPOGA)

2009-07-12
2009-01-2346
The International Space Station (ISS) requires advanced life support to continue its mission as a permanently-manned space laboratory and to reduce logistic resupply requirements as the Space Shuttle retires from service. Additionally, as humans reach to explore the moon and Mars, advanced vehicles and extraterrestrial bases will rely on life support systems that feature in-situ resource utilization to minimize launch weight and enhance mission capability. An obvious goal is the development of advanced systems that meet the requirements of both mission scenarios to reduce development costs by deploying common modules. A high pressure oxygen generating assembly (HPOGA) utilizing a high differential pressure (HDP) water electrolysis cell stack can provide a recharge capability for the high pressure oxygen storage tanks on-board the ISS independently of the Space Shuttle as well as offer a pathway for advanced life support equipment for future manned space exploration missions.
Journal Article

Dynamic Analysis of Car Ingress/Egress Movement: an Experimental Protocol and Preliminary Results

2009-06-09
2009-01-2309
This paper focuses on full body dynamical analysis of car ingress/egress motion. It aims at proposing an experimental protocol adapted for analysing joint loads using inverse dynamics. Two preliminary studies were first performed in order to 1/ define the main driver/car interactions so as to allow measuring the contact forces at all possible contact zones and 2/ identify the design parameters that mainly influence the discomfort. In order to verify the feasibility of the protocol, a laboratory study was carried out, during which two subjects tested two car configurations. The experimental equipment was composed of a variable car mock-up, an optoelectronic motion tracking system, two 6D-force plates installed on the ground next to the doorframe and on the car floor, a 6D-Force sensor between the steering wheel and the steering column, and two pressure maps on the seat. Motions were reconstructed from measured surface markers trajectories using inverse kinematics.
Journal Article

International Space Station United States Operational Segment Crew Quarters On-orbit vs. Design Performance Comparison

2009-07-12
2009-01-2367
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. As many as four CQs can be installed in the Node 2 element to increase the ISS crew member size to six. The CQs provide crew members with private space that has enhanced acoustic noise mitigation, integrated radiation-reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The rack-sized CQ system has multiple crew member restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crew member to personalize his or her CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to Node 2 is described in this paper.
Journal Article

Improving the Measurement Accuracy of Water Partial Pressure Using the Major Constituent Analyzer

2009-07-12
2009-01-2432
The Major Constituent Analyzer (MCA) is a mass spectrometer based system that measures the major components of the International Space Station (ISS) atmosphere, including water. The measurement of water vapor has been difficult due to adsorption on various surfaces in the sample path, and has thus far been discounted in MCA atmosphere monitoring. This paper summarizes the results in identifying the primary source of the problem, the modeling being used to further elucidate the water surface adsorption/desorption process, and the proposed means available to provide a stable calibration and accurate measure of the water abundance.
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Journal Article

Stability Analysis of a Disc Brake with Piezoelectric Self-Sensing Technique

2009-10-11
2009-01-3034
Piezoelectric self-sensing allows to measure frequency response functions of dynamical systems with one single piezoelectric element. This piezoceramics is used as actuator and sensor simultaneously. In this study, a model-based piezoelectric self-sensing technique is presented to obtain potential squealing frequencies of an automotive disc brake. The frequency-response function of the brake system is obtained during operation by measuring the current flowing through the piezoelectric element while the piezoelectric element is driven by a harmonic voltage signal with constant amplitude. The current flow is composed of the part which is required to drive the piezoelectric element as an actuator and a second part which is the sensor signal that is proportional to the vibration amplitude of the attached mechanical system. Typically the first part is dominant and the influence of the mechanical system is marginal.
Journal Article

Effects of Chemical Components and Manufacturing Process of Cast Iron Brake Disc on its Resonant Frequency Variation

2009-10-11
2009-01-3030
Many engineers have been working to reduce brake noise in many ways for a long time. So far, a progress has been made in preventing and predicting brake noise. Nevertheless, there are some discrepancies of brake noise generation propensity between testing for the prototype and the production. As known in general, the reason for this unpredicted brake noise occurrence in production is partly due to the variation of the resonant frequency, material and the other unpredictable or unmanageable variations of the components in a brake system. In this paper, effects of chemical components and casting process of gray iron brake disc on its resonant frequency variation have been studied. Especially this paper is focused on the variation in material aspects and manufacturing parameters during disc casting in usual production condition. And their effects are investigated by the variation of out-of-plane modal resonant frequency.
Journal Article

Current and New Approaches for Brake Noise Evaluation and Rating

2009-10-11
2009-01-3037
Predominant brake noise evaluation and rating was developed many years ago and no longer fulfills the need of modern development work. An extended description of a noisy brake event (European expert group guideline EKB 3006) and a standardized test data exchange format, allowing the comparison of different source test results (EKB 3008) are presented. Today's noise rating systems are described and compared by selected examples. The paper proposes an open 4 level noise rating system (EKB 3007). It starts with simple occurrence statistics, noise rating based on sound levels, situational noise rating including duration and finally based on the human perception, described by psychoacoustics.
X