Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Technical Paper

A Comprehensive Review of Pedestrian Impact Reconstruction

1987-02-01
2014-01-2828
This paper presents a review on pedestrian impact reconstruction methodology and offers a comprehensive review of the literature. Several types of analyses are discussed which can be used to reconstruct the accident scenario using the facts collected from the scene. Inclusive in this review is the utilization of skid mark analysis, debris analysis, injury/damage match-up, trajectory analysis, nighttime visibility, and alcohol effects. The pedestrian impact reconstruction methodology is illustrated with a real world case example to point out different observations which can provide insight into the pedestrian/vehicle collision reconstruction approach. The literature review provides a broad foundation of information on pedestrian impact reconstruction and can be used to supplement the techniques presented in this paper in areas related to pedestrian impact. Research advances in the area of pedestrian impact reconstruction are also discussed in this paper.
Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Postural Comfort Inside a Car: Development of an Innovative Model to Evaluate the Discomfort Level

2009-04-20
2009-01-1163
How can car designers evaluate device’s position inside a car today? Today only subjective tests or “reachability” tests are made to assess if a generic user is able to reach devices, but it’s no longer enough. The aim of this study is to identify an instrument (index) that is able to provide a numerical information about the discomfort level connected with a posture that is kept inside a car to reach a device, by this instrument it should be possible not only judge a posture, but also compare different solutions and get rapid and accurate evaluations. In the state of the art there are many indexes developed to evaluate postural comfort (like RULA, REBA and LUBA [3, 4, 5]) but none of them has been realized to evaluate postures’ conditions that can be detected inside a car, so their evaluations cannot be acceptable.
Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Entrainment Waves in Diesel Jets

2009-04-20
2009-01-1355
Recent measurements in transient diesel jets have shown that fuel in the wake of the injection pulse mixes with ambient gases more rapidly than in a steady jet. This rapid mixing after the end of injection (EOI) can create fuel-lean regions near the fuel injector. These lean regions may not burn to completion for conditions where autoignition occurs after EOI, as is typical of low-temperature combustion (LTC) diesel engines. In this study, transient diesel jets are analyzed using a simple one-dimensional jet model. The model predicts that after EOI, a region of increased entrainment, termed the “entrainment wave,” travels downstream at twice the initial jet propagation rate. The entrainment wave increases mixing by up to a factor of three. This entrainment wave is not specific to LTC jets, but rather it is important for both conventional diesel combustion and LTC conditions.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution

2009-04-20
2009-01-1513
A thorough understanding of vehicle exhaust aftertreatment system performance requires time-resolved emissions measurements that accurately follow driving transients, and that are correctly time-aligned with exhaust temperature and flow measurements. The transient response of conventional gas analyzers is characterized by both a time delay and an attenuation of high-frequency signal components. The distortion that this imposes on transient emissions measurements causes significant errors in instantaneous calculations of aftertreatment system efficiency, and thus in modal mass analysis. This creates difficulties in mathematical modeling of emissions system performance and in optimization of powertrain control strategies, leading to suboptimal aftertreatment system designs. A mathematical method is presented which improves the response time of emissions measurements. This begins with development of a model of gas transport and mixing within the sampling and measurement system.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Treasuri2/FE: A Tool for the FE Simulation of Sound Package Parts Fully Integrated in Nastran

2009-05-19
2009-01-2216
Porous materials are extensively used in the construction of automotive sound package parts, due to their intrinsic capability of dissipating energy through different mechanisms. The issue related to the optimization of sound package parts (in terms of weight, cost, performances) has led to the need of models suitable for the analysis of porous materials' dynamical behavior and for this, along the years, several analytical and numerical models were proposed, all based on the system of equations initially developed by Biot. In particular, since about 10 years, FE implementations of Biot's system of equations have been available in commercial software programs but their application to sound package parts has been limited to a few isolated cases. This is due, partially at least, to the difficulty of smoothly integrating this type of analyses into the virtual NVH vehicle development.
Journal Article

Multiple-Event Fuel Injection Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0925
The objective of this research is a detailed investigation of multiple injections in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the performance and emissions benefits of multiple injections via experiments and simulations in a 0.48L signal cylinder light-duty engine operating at 2000 r/min and 5.5 bar IMEP. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2]. This study examines the effects of fuel split distribution, injection event timing, rail pressure, and boost pressure which are each explored within a defined operation range in LTC.
Journal Article

Determination of PEMS Measurement Allowances for Gaseous Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program Part 3 – Results and Validation

2009-04-20
2009-01-0938
Beginning in 2007, heavy-duty engine manufacturers in the U.S. have been responsible for verifying the compliance on in-use vehicles with Not-to-Exceed (NTE) standards under the Heavy-Duty In-Use Testing Program (HDIUT). This in-use testing is conducted using Portable Emission Measurement Systems (PEMS) which are installed on the vehicles to measure emissions during real-world operation. A key component of the HDIUT program is the generation of measurement allowances which account for the relative accuracy of PEMS as compared to more conventional, laboratory based measurement techniques. A program to determine these measurement allowances for gaseous emissions was jointly funded by the U.S. Environmental Protection Agency (EPA), the California Air Resources Board (CARB), and various member companies of the Engine Manufacturer's Association (EMA).
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Journal Article

Innovation Trends in the Field of Internal Combustion Engines

2009-06-15
2009-01-1944
One reliable way to measure the research activity in the field of engine technology is through the number of patent applications that are submitted to different patent offices in the world. This paper offers a thorough statistical analysis of the innovation trends related to downsizing in Europe, USA, Japan, China and Korea in the field of internal combustion engines during the last 10 years, as seen by the European Patent Office. It demonstrates which technical fields (e.g. super- and turbocharging, direct fuel injection systems, hybrid technology, variable valve actuation, exhaust gas recirculation, etc.) are the most active, who are the most important players and which country attracts the highest number of applications. Subfields of certain technical fields are also analyzed. The technical fields discussed are chosen according to the International Patent Classification (IPC) scheme.
Journal Article

Development Testing of a High Differential Pressure (HDP) Water Electrolysis Cell Stack for the High Pressure Oxygen Generating Assembly (HPOGA)

2009-07-12
2009-01-2346
The International Space Station (ISS) requires advanced life support to continue its mission as a permanently-manned space laboratory and to reduce logistic resupply requirements as the Space Shuttle retires from service. Additionally, as humans reach to explore the moon and Mars, advanced vehicles and extraterrestrial bases will rely on life support systems that feature in-situ resource utilization to minimize launch weight and enhance mission capability. An obvious goal is the development of advanced systems that meet the requirements of both mission scenarios to reduce development costs by deploying common modules. A high pressure oxygen generating assembly (HPOGA) utilizing a high differential pressure (HDP) water electrolysis cell stack can provide a recharge capability for the high pressure oxygen storage tanks on-board the ISS independently of the Space Shuttle as well as offer a pathway for advanced life support equipment for future manned space exploration missions.
Journal Article

Comparative Configurations for Lunar Lander Habitation Volumes: 2005-2008

2009-07-12
2009-01-2366
This paper presents an overview of the progression of the contemplated candidate volumes for the Lunar Lander since the beginning of the Vision for Space Exploration in 2004. These sets of data encompass the 2005 Exploration Systems Architecture Study (ESAS), the 2006 Request for Information on the Constellation Lunar Lander, the 2007 Lander Design Analysis Cycle −1 (LDAC-1) and the 2008 Lunar Lander Development Study (LLDS). This data derives from Northrop Grumman Corporation analyses and design research. A key focus of this investigation is how well the lunar lander supports crew productivity.
X