Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-09-05
2021-24-0032
The European Union has defined legally binding CO2-fleet targets for new cars until 2030. Therefore, improvement of fuel economy and carbon dioxide emission reduction is becoming one of the most important issues for the car manufacturers. Today’s conventional car powertrain systems are reaching their technical limits and will not be able to meet future CO2 targets without further improvement in combustion efficiency, using low carbon fuels (LCF), and at least mild electrification. This paper demonstrates a highly efficient and performant combustion engine concept with a passive pre-chamber spark plug, operating at stoichiometric conditions and powered with liquefied petroleum gas (LPG). Even from fossil origin, LPG features many advantages such as low carbon/hydrogen ratio, low price and broad availability. In future, it can be produced from renewables and it is in liquid state under relatively low pressures, allowing the use of conventional injection and fuel supply components.
Technical Paper

Virtual Development of Injector Spray Targeting by Coupling 3D-CFD Simulations with Optical Investigations

2020-04-14
2020-01-1157
Further improvements of internal combustion engines to reduce fuel consumption and to face future legislation constraints are strictly related to the study of mixture formation. The reason for that is the desire to supply the engine with homogeneous charge, towards the direction of a global stoichiometric blend in the combustion chamber. Fuel evaporation and thus mixture quality mostly depend on injector atomization features and charge motion within the cylinder. 3D-CFD simulations offer great potential to study not only injector atomization quality but also the evaporation behavior. Nevertheless coupling optical measurements and simulations for injector analysis is an open discussion because of the large number of influencing parameters and interactions affecting the fuel injection’s reproducibility. For this purpose, detailed numerical investigations are used to describe the injection phenomena.
Journal Article

Optimal Control based Calibration of Rule-Based Energy Management for Parallel Hybrid Electric Vehicles

2015-04-14
2015-01-1220
In this paper a rule-based energy management for parallel hybrid electric vehicles (HEVs) is presented, which is based on the principles describing the optimal control behavior. Therefore we first show the general relations that can be used to describe the optimal limit of electric driving as well as the optimal torque split among the two propulsion systems. Subsequently these relations are employed to derive maps, which represent the optimal behavior depending on several input parameters. These maps are then used as inputs for the rules in the proposed energy management. This not only makes it possible to automatically calibrate the rule-based controller but also gives the optimal control in every driving situation. Given it is not fuel-efficient to turn the internal combustion engine (ICE) on or off for short intervals, it is further shown how this approach allows to adjust the established limit for electric driving by additional rules.
Technical Paper

Optimization of a CNG Driven SI Engine Within a Parallel Hybrid Power Train by Using EGR and an Oversized Turbocharger with Active-WG Control

2010-04-12
2010-01-0820
The hybrid power train technology offers various prospects to optimize the engine efficiency in order to minimize the CO₂ emissions of an internal-combustion-engine-powered vehicle. Today different types of hybrid architectures like parallel, serial, power split or through-the-road concepts are commonly known. To achieve lowest fuel consumption the following hybrid electric vehicle drive modes can be used: Start/Stop, pure electric/thermal driving, recuperation of brake energy and the hybrid mode. The high complexity of the interaction between those power sources requires an extensive investigation to determine the optimal configuration of a natural-gas-powered SI engine within a parallel hybrid power train. Therefore, a turbocharged 1.0-liter 3-cylinder CNG engine was analyzed on the test bench. Using an optimized combustion strategy, the engine was operated at stoichiometric and lean air/fuel ratio applying both high- and low-pressure EGR.
Technical Paper

Virtual Set-up of a Racing Engine for the Optimization of Lap Performance through a Comprehensive Engine-Vehicle-Driver Model

2011-09-11
2011-24-0141
In Motorsports the understanding of the real engine performance within a complete circuit lap is a crucial topic. On the basis of the telemetry data the engineers are able to monitor this performance and try to adapt the engine to the vehicle's and race track's characteristics and driver's needs. However, quite often the telemetry is the sole analysis instrument for the Engine-Vehicle-Driver (EVD) system and it has no prediction capability. The engine optimization for best lap-time or best fuel economy is therefore a topic which is not trivial to solve, without the aid of suitable, reliable and predictive engineering tools. A complete EVD model was therefore built in a GT-SUITE™ environment for a Motorsport racing car (STCC-VW-Scirocco) equipped with a Compressed Natural Gas (CNG) turbocharged S.I. engine and calibrated on the basis of telemetry and test bench data.
Technical Paper

Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine

2013-09-08
2013-24-0047
In this paper the development approach and the results of numerical and experimental investigations on homogeneous charge compression ignition in a free piston engine are presented. The Free Piston Linear Generator (FPLG) is a new type of internal combustion engine designed for the application in a hybrid electric vehicle. The highly integrated system consists of a two-stroke combustion unit, a linear generator, and a mass-variable gas spring. These three subsystems are arranged longitudinally in a double piston configuration. The system oscillates linearly between the combustion chamber and the gas spring, while electrical energy is extracted by the centrally arranged linear generator. The mass-variable gas spring is used as intermediate energy storage between the downstroke and upstroke. Due to this arrangement piston stroke and compression ratio are no longer determined by a mechanical system.
Technical Paper

Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization

2022-06-14
2022-37-0018
The new CO2 and emissions limits imposed to European manufacturers require the adoption of different innovative solutions, such as the use of potentially CO2-neutral synthetic fuels alongside a tailored development of the internal combustion engine, as an excellent solution to accompany the hybridization of vehicles. Dr.Ing. h.c. F. Porsche AG and FKFS, already partners for the development of engines with eFuels, propose a new study carried out on a research engine, investigating the combination of Porsche synthetic gasoline (POSYN) with an engine with millerization and passive pre-chamber. The use of CO2-neutral fuels allow for an immediate reduction in CO2 emissions from all cars already on the market, particularly since Porsche is one of the manufacturers whose cars remain in use for the longest time. The data collected on a single-cylinder engine test bench, for different fuels, with conventional spark plug are used as input for the calibration of 3D-CFD simulations.
Technical Paper

An Operating Strategy Approach for Serial/Parallel Hybrid Electric Vehicles

2022-06-14
2022-37-0016
In this paper, a serial/parallel hybrid electric vehicle with a 17 kWh battery and 400 V voltage level is simulated. The vehicle is a C-segment vehicle, which has optimized driving resistances. It also has an external recharge possibility, which enables fully electric driving. The vehicle uses an Otto-engine concept as well as two electric motors. One motor is a permanent magnet synchronous motor and can be used as traction motor or generator, the other one is an induction motor used as main traction motor for the vehicle. The vehicle uses a 2-speed gearbox, where the electric motors are mounted in P2-configuration. To reach optimal results for the fuel consumption, an operating strategy based on the Equivalent Consumption Minimization Strategy (ECMS) is introduced and implemented in the vehicle simulation.
Technical Paper

The Influence of eFuel Formulation on Post Oxidation and Cold Start Emissions

2021-04-06
2021-01-0632
The goal of reducing the impact of road transportation on the environment can be reached by different approaches. The use of non-fossil synthetic fuels from renewable energy sources in the entire fleet of internal combustion engine vehicles is only one promising pathway to minimize the vehicle’s carbon footprint during the use phase. The steadily tightening emissions legislation confront the developers of future combustion engines with major challenges: Historically, the chemical and physical improvement of the combustion process, tail pipe emissions reduction and the development of optimized after-treatment systems were linked to improvements in fuel quality. In order to further decrease exhaust gas emissions, the optimization of the chemical composition of renewable fuels are a basic requirement.
Technical Paper

Evaluation of Engine-Related Restrictions for the Global Efficiency by Using a Rankine Cycle-Based Waste Heat Recovery System on Heavy Duty Truck by Means of 1D-Simulation

2018-04-03
2018-01-1451
As a promising concept to improve fuel efficiency of a long-haul heavy duty truck with diesel engine, organic Rankine cycle (ORC) based waste heat recovery system (WHR) by utilizing the exhaust gas from internal combustion engine has continuously drawn attention from industry in recent years. The greatest achievable global efficiency may be, however, restricted by the engine. On one hand, engine operating conditions have direct impact on the temperature and the mass flow of exhaust gas, which is the waste heat source, on the other hand, the engine cooling system limits the heat rejection from the condenser of the WHR system. This paper aims to evaluate the impacts of the varied engine applications considering the effects of the WHR system on the global efficiency and engine emissions.
Technical Paper

Analysis of Water Injection Strategies to Exploit the Thermodynamic Effects of Water in Gasoline Engines by Means of a 3D-CFD Virtual Test Bench

2019-09-09
2019-24-0102
CO2 emission constraints taking effect from 2020 lead to further investigations of technologies to lower knock sensitivity of gasoline engines, main limiting factor to increase engine efficiency and thus reduce fuel consumption. Moreover the RDE cycle demands for higher power operation, where fuel enrichment is needed for component protection. To achieve high efficiency, the engine should be run at stoichiometric conditions in order to have better emission control and reduce fuel consumption. Among others, water injection is a promising technology to improve engine combustion efficiency, by mainly reducing knock sensitivity and to keep high conversion rates of the TWC over the whole engine map. The comprehension of multiple thermodynamic effects of water injection through 3D-CFD simulations and their exploitation to enhance the engine combustion efficiency is the main purpose of the analysis.
Technical Paper

Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels

2021-04-06
2021-01-0381
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation.
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Technical Paper

Methods to Investigate the Importance of eFuel Properties for Enhanced Emission and Mixture Formation

2021-09-05
2021-24-0017
Synthetic fuels from renewable energy sources can be a significant contribution on the roadmap to sustainable mobility. Porsche sees electro-mobility as the top priority, but eFuels produced by renewable electricity are an effective addition to support the defossilization of the transportation sector. In addition to the sustainability aspect, the composition and properties of eFuels can be optimized via the synthetic fuel production path. The use of optimized fuel formulations has a direct influence on combustion and emission behavior. The latter is one focus of the development of internal combustion engines in the wake of constantly tightening emissions legislation. The increasing restrictions on vehicles with internal combustion engines require the reduction of emissions. Particulate matter emissions are among others the focus of criticism. The composition and properties of fuels can reduce particulate emissions and the formation of unburned hydrocarbons to a high degree.
Technical Paper

Experimental and Numerical Investigation for Improved Mixture Formation of an eFuel Compared to Standard Gasoline

2021-09-05
2021-24-0019
The increasingly stringent targets for the automotive industry towards sustainability are being addressed not only with the improvement of engine efficiency, but also with growing research about alternative, synthetic, and CO2-neutral fuels. These fuels are produced using renewable energy sources, with the goal of making them CO2-neutral and also to reduce a significant amount of engine emissions, especially particulate matter (PM) and total hydrocarbon (THC). The objective of this work is to study the behavior and the potential of an eFuel developed by Porsche, called POSYN (POrscheSYNthetic) and to compare it with a standard gasoline.
Journal Article

A Load Spectrum Data based Data Mining System for Identifying Different Types of Vehicle Usage of a Hybrid Electric Vehicle Fleet

2016-04-05
2016-01-0278
In order to achieve high customer satisfaction and to avoid high warranty costs caused by component failures of the power-train of hybrid electric vehicles (HEV), car manufacturers have to optimize the dimensioning of these elements. Hence, it is obligatory for them to gain knowledge about the different types of vehicle usage being predominant all over the world. Therefore, in this paper we present a Data Mining system that employs a Random Forest (RF) based dissimilarity measure in the dimensionality reduction technique t-Distributed Stochastic Neighbor Embedding (t-SNE) to automatically identify and visualize different types of vehicle usage by applying these methods to aggregated logged on-board data, i.e., load spectrum data. This kind of data is calculated and recorded directly on the control units of the vehicles and consists of aggregated numerical data, like the histogram of the velocity signal or the traveled distance of a vehicle.
X