Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
Journal Article

Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

2009-07-12
2009-01-2371
The Space Suit Water Membrane Evaporator (SWME) is a baseline heat rejection technology that was selected to develop the Constellation Program lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element Portable Life Support Subsystem to provide cooling to the thermal loop via water evaporation to the vacuum of space. Previous work [1] described the test methodology and planning that are entailed in comparing the test performance of three commercially available HoFi materials as alternatives to the sheet membrane prototype for SWME: (1) porous hydrophobic polypropylene, (2) porous hydrophobic polysulfone, and (3) ion exchange through nonporous hydrophilic-modified Nafion®.
Journal Article

Highly Flexible Automated Manufacturing of Composite Structures Consisting of Limp Carbon Fibre Textiles

2009-11-10
2009-01-3213
Due to the conventional autoclaving of pre-impregnated materials causes high costs in the production of carbon fibre structures, new injection methods have become more and more relevant. The research project “CFK-Tex” focuses on the automated handling and processing of preforms out of dry carbon fibre textiles. Regarding the advantages in quality improvement and process time, an automation of all process steps is getting enforced. The major challenge, in addition to the difficult handling-properties of the materials and high quality demands, is the enormous variety of outline variants caused by small production quantities but many different textile cuts per part. In the first step the requirements of an automated system are exactly analyzed considering the specific material properties as well as process and product based characteristics.
Journal Article

Testing of 300 Series Stainless Steel Tubing for Aerospace Applications

2009-11-10
2009-01-3257
The applicability, interpretation, and implementation of the testing requirements, in various aerospace and military tubing material specifications have caused confusion across the tubing industry. Despite the release of AMS specifications, procurement entities continue to purchase material produced to the older and often cancelled Mil-T specifications. In addition to mechanical properties, these specifications cover requirements including composition, grain size, heat treating, passivation, pressure testing, formability, non-destructive testing, and sampling frequency. Confusion may result for tubing producers who also supply commercial grade tubing having similar mechanical properties aerospace tubing. Ultimately it is the responsibility of the tubing manufacturer to understand the risks involved in meeting the requirements of the aerospace material specifications, both Military and AMS.
Journal Article

Unique Regeneration Steps for the Sorbent-Based Atmosphere Revitalization System Designed for CO2 and H2O Removal from Spacecraft Cabins

2009-07-12
2009-01-2532
An SBAR system for H2O and CO2 removal from spacecraft cabin air was studied both experimentally and theoretically. An emphasis was placed on its purgeless, deep vacuum regeneration step. Three evacuation steps were studied: 1) single ended depressurization (SED) through the feed end of the bed; 2) simultaneous dual ended depressurization (DED) through both ends of the bed; and 3) simultaneous triple ended depressurization (TED) through both ends of the bed and a port located at some axial position. TED resulted in a lower average bed pressure at the end of evacuation compared to DED, which, in turn caused more CO2 to be removed. An optimal third port location also existed. The use of TED should allow the SBAR bed size to be reduced.
Journal Article

Residual Stress Analysis of Punched Holes in 6013 Aluminum Alloy Commercial Vehicle Side Rails

2010-10-05
2010-01-1909
Compliance with tighter emission regulations has increased the proportion of parasitic weight in commercial vehicles. In turn, the amount of payload must be reduced to comply with transportation weight requirements. A re-design of commercial vehicle components is necessary to decrease the vehicle weight and improve payload capacity. Side rails have traditionally been manufactured from high strength steels, but significant weight reductions can be achieved by substituting steel side rails with 6013 high strength aluminum alloy side rails. Material and stress analyses are presented in this paper in order to understand the effect of manufacturing process on the material's mechanical behavior. Metallographic and tensile test experiments for the 6013-T4 alloy were performed in preparation for residual stress measurements of a punching operation. Punched holes are critical to the function of the side rail and can lead to high stress levels and cracking.
Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

Optimized Design Solutions for Roof Strength Using Advanced High Strength Steels

2010-04-12
2010-01-0214
In August 2005, National Highway Traffic Safety Administration (NHTSA) proposed to increase the roof strength requirement under Federal Motor Vehicle Safety Standard (FMVSS) 216 from 1.5 to 2.5 times unloaded vehicle weight (UVW). To meet the new requirement with a minimum impact on vehicle weight and cost, the automotive community is working actively to develop improved roof architectures using advanced high strength steels (AHSS) and other lightweight materials such as structural foam. The objective of this study is to develop an optimized steel-only solution with low material and part-manufacturing costs. Since the new regulation will present a particular challenge to the roof architectures of large vans, pickup trucks and SUVs due to their large mass and size, a validated roof crush model on a B-Pillar-less light truck is utilized in this study.
Journal Article

New Liquid Surface Conditioner for Low-Temperature Phosphating System Aimed at CO2 Emission Reduction

2010-04-12
2010-01-0732
A new liquid surface conditioner has been developed to improve phosphate coating quality and enable a low-temperature phosphating system designed to reduce CO₂ emissions during the pretreatment processes of automobile production. Phosphate film is formed by a phosphating treatment that provides corrosion resistance for the steel plates that make up auto bodies. In the vehicle body, pocket-shaped structures such as side sills and wheel arches are likely to collect muddy water and form rust. Regarding anticorrosion quality assurance, particular attention must be paid to these pocket structures, in which phosphating solution flows slowly, and a lower solution-volume-to-surface-area ratio contributes less to the phosphating reaction. For this reason, with the conventional liquid surface conditioner, a low-temperature phosphating system cannot coat substrate surfaces sufficiently, which would result in lower corrosion resistance.
Journal Article

Fatigue Behavior of Dissimilar 5754/7075 and 7075/5754 Spot Friction Welds in Lap-Shear Specimens

2010-04-12
2010-01-0961
Fatigue behavior of spot friction welds or friction stir spot welds in lap-shear specimens of dissimilar aluminum 5754-O and 7075-T6 sheets is investigated based on experimental observations and two fatigue life estimation models. Optical micrographs of the 5754/7075 and 7075/5754 welds after failure under cyclic loading conditions are examined to understand the failure mechanisms of the welds. The micrographs show that the 5754/7075 welds mainly fail from the kinked fatigue crack through the lower sheet thickness. Also, the micrographs show that the 7075/5754 welds mainly fail from the kinked fatigue crack through the lower sheet thickness and from the fracture surface through the upper sheet thickness.
Journal Article

Experiences with Experimental Determination of the Yield Locus and its Evolution for Advanced High Strength Steels

2010-04-12
2010-01-0976
Accurate description of the plastic yield locus is important for accurate prediction of sheet metal formability and springback using FEM. This paper presents experimental results obtained for the initial plastic yield locus and its evolution for some selected Advanced High Strength Steels (AHSS). A review of available experimental methods was conducted to select appropriate techniques for testing. For loading in tension-shear, the Arcan test was selected, however because of lack of uniformity of the stress distribution, the test was not included in the final series of tests. Shear testing, uniaxial tensile testing, plane strain testing and stacked compression testing were used to determine the yield locus. From the test results and analysis for the selected AHSS, it seems that the onset of initial yielding and its isotropic evolution to 4% plastic strain is best described by the von Mises yield function.
Journal Article

Advanced Material Characterizations and Constitutive Modeling for AHSS Springback Predictions

2010-04-12
2010-01-0980
Springback prediction is one of the roadblocks for using advanced high strength steel in the automotive industry. Accurate characterization and modeling of the mechanical behavior of AHSS is recognized as one of the critical factors for successful prediction of springback. Conventional tensile test based material characterization and constitutive modeling may lead to poor springback simulation accuracy. Aiming to accurately predict springback, a series of advanced material characterizations including bi-axial material testing, large-strain loading path reversal testing, unloading tests at large strain, stress-strain behavior beyond uniform elongation, were performed for selected AHSS and associated constitutive models were developed to incorporate these characterizations. Validations through lab samples and industrial parts show that the AHSS springback prediction accuracy is significantly improved with these improved material models.
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Journal Article

Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

2010-04-12
2010-01-0975
Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344°C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.
Journal Article

Visualization of Material Flow in a Refill Friction Stir Spot Welding Process Using Marker Materials

2010-04-12
2010-01-0971
Friction Stir Spot Welding (FSSW) is a relatively new solid state joining technology that has the potential to be a replacement for single point joining processes like Resistance Spot Welding and rivet technology in certain applications. Since the material flow around the pin plays an important role in determining the quality of the weld, understanding how the material moves is important to optimize process parameters and to validate the results of numerical simulations of the process. In this paper, an experimental study aimed at visualizing the material flow during the plunge phase of refill FSSW of an aluminum alloy is presented. Different marker materials were placed at a certain depth from the plate surface and metallographic samples in three mutually perpendicular directions were prepared and examined to identify the final location of the marker material after the plunge of the pin.
Journal Article

The Impact of Advanced Material Simulation Parameters in Press Shop Operations Using Mild Steel Grades

2010-04-12
2010-01-0992
Forming simulation is a widely used tool to estimate production forming capabilities. During the last three to four years the prediction of process robustness by sensitivity analysis has been developed for industrial applications. The change of material parameters is one key figure and has a large impact on the final findings. Thus the user has to ensure that the variations done are in correlation with real material behaviour and the selected numerical model is reliable. Up to now the permitted changes in modelling are seldom secured by real measurements, especially when more advanced material models and hardening options are applied. Various materials chosen out of the production process for mild steel grades have been investigated for their mechanical properties using different tests. The limits of failure are defined by a reduced number of Nakajima tests to predict the forming limit curve (FLC). All data is prepared in the same manner to meet simulation program needs.
X