Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effects of Air Vents Locations on the Internal Climate Control of Vehicles

2001-03-05
2001-01-0287
The ventilation flow inside a one-fifth-scale model of a typical mid size passenger compartment with a driver present has been investigated experimentally and computationally. In this study only one ventilation mode has been evaluated, namely the defrost mode in which air is discharged from two vents in the form of slits located along the top of the dashboard. The fluid measurements were taken using the Particle Image Velocimetry (PIV) technique to acquire the velocity distribution of the model interior. The Computational Fluid Dynamic (CFD) analysis have been implemented and simulated by using the commercial CFD code FLUENT as a tool to investigate the flow of the compartment's interior. Comparisons of the predicted velocity field with experimental data show good agreement and were qualitatively consistent.
Technical Paper

Condenser Air Pre-Heating Stand for Development, Validation, and Continuous Improvement Testing of Climate Control Systems

2001-03-05
2001-01-0290
In the operation of vehicular air-conditioning systems, the temperature of the condenser inlet air has significant effects on system performance and operating characteristics. In some vehicles, engine cooling module (ECM) inlet air is supplied from the engine compartment, subjecting the ECM to inlet air that is hotter than the ambient environment. In addition, vehicles in idle operation are subject to ECM air recirculation that can also elevate the ECM inlet air temperature. In order to conduct development, validation, and continuous improvement testing of Heating, Ventilating, and Air-Conditioning (HVAC) systems under conditions simulating “real-life”, a condenser air pre-heating stand was built.
Technical Paper

Some Aerodynamic Aspects of Centrifugal Fan Characteristics of an Automotive HVAC Blower

2001-03-05
2001-01-0291
Experimental and numerical approaches were adopted to understand flow behavior and performance of centrifugal fans in an automotive HVAC blower system. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small scroll casing. Recent requirements in the design of the multiblade centrifugal fan being used in automotive HVAC blowers are not only higher pressure rise and lower noise, but also better packaging in the automobile cabin. In order to meet these requirements, among various well-known design factors affecting the fan performance, principal parameters related to the rotor shape were modified and detailed flow analysis was carried out. Measurements have been made by means of a miniature five-hole probe and a pressure scanning system connected to an online data acquisition system.
Technical Paper

All Thermoplastic Lightweight Structural Rear-Seat-Back

2001-03-05
2001-01-0324
An innovative seat back design for fold down split-rear seat backs has been developed for application in SUV’s, MPV’s and hatchbacks. The all-thermoplastic seat back design meets US and European government regulations such as, the FMVSS 210, 207 in the US, and ECE 17 (luggage retention) in Europe. It is also expected to meet the newly introduced FMVSS 225 (child seat belt tether load) requirement. Currently application of the blow molded seat back is limited to sedans where the seat belt anchor loads are transmitted to a steel package shelf. For applications where the seat-belt anchor loads are transmitted to the seat back, hefty steel frame and reinforcements are required which add weight and cost to the seat back. The same is true for seats that need to comply with the European luggage retention requirement.
Technical Paper

The Role of Binocular Information for Distance Perception in Rear-Vision Systems

2001-03-05
2001-01-0322
New developments in the use of two-dimensional displays to supplement driver vision have made it more important to understand the roles that various distance cues play in driver perception of distance in more conventional ways of viewing the road, including direct vision and viewing through rearview mirrors. The current study was designed to investigate the role of binocular distance cues for perception of distance in rearview mirrors. In a field experiment, we obtained data to estimate the importance of binocular cues for distance judgments under conditions representative of real-world traffic. The results indicate that, although binocular cues are potentially available to drivers, these cues probably play little or no role in distance judgments in rearview mirrors in normal driving situations.
Technical Paper

Dynamic Property Response of Polyurethane Foam as a Function of Test Frequency

2001-03-05
2001-01-0323
Comfort performance has developed into a central theme of vehicle seating design due to the role of the seat as the interface between the vehicle and the human. These comfort performance requirements exercise considerable influence over the specifications of the polyurethane foam that serves as a primary load-bearing material in the seat assembly. Various test protocols have been established to measure and predict comfort performance for polyurethane foam. One of the most important test methods is the vibration transmissivity test, used to characterize the response of a material to vibration of varying frequency and energy. This test methodology measures the performance of polyurethane foam alone to the performance of a fully assembled seat in a vehicle driven on a road surface. As such, there are a variety of test conditions employed to characterize transmissivity performance.
Technical Paper

Modeling Methodology of Tearseams for Invisible PSIR Systems

2001-03-05
2001-01-0314
Automotive interiors are undergoing rapid transformation with the introduction of invisible PSIR integral systems. This styling trend requires continuous class A surface for the Instrument Panel (IP) and introduces complexities in the design and analysis of PSIR integral systems. The most important criterion for airbag doors is that it must open as intended, at the tearseam, within the deployment temperature range and without fragmentation. Consequently it is imperative that in analytical simulations, the finite element model of the tearseam is accurate. The accuracy of the model is governed by (a) optimal level of refinement, (b) surface geometry representation and (c) material model. This paper discusses modeling methodology for tearseams with respect to mesh refinement and the effect of geometry.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Material Model Development for Impact Analysis of Oriented Polypropylene Foam Structures

2001-03-05
2001-01-0310
Federal legislation for head impact protection in upper automotive interiors (FMVSS 201U) has presented a unique energy management problem for the automotive industry. Due to extremely tight packaging conditions, energy absorbers are required to have efficiencies which exceed those of traditional foam materials, and force the development of new methods of energy absorption. The push toward shortened design cycle times has required the use of predictive engineering tools such as finite element analysis. Predictive tools which can accurately drive design direction reduce design cycle times, costs associated with multiple prototype part builds, and costs associated with physical testing. Over the last few years, the inclusion of FMVSS 201U energy absorbing countermeasures in the upper interior trim has been largely experimental in nature, yielding solutions which are costly in both time and money.
Technical Paper

Testing Issues of Automotive Air-Conditioning Systems Using R-744 (Carbon Dioxide) Refrigerant

2001-03-05
2001-01-0295
Global environmental issues require that new alternatives to R-134a refrigerant be investigated by the automotive air-conditioning (A/C) industry. Test facilities must be able to handle the challenges that these refrigerants pose. One refrigerant currently under investigation is Carbon Dioxide (CO2). The high pressure and toxicity of CO2, require the test facility to institute more stringent guidelines and add equipment to safeguard personnel. The operating characteristics of this refrigerant, and the additional equipment needed for the test A/C system, necessitate more complex automated test data acquisition and control. The addition of an internal heat exchanger in the CO2 A/C system is an example of the changes required. Different thermal characteristics introduced by this refrigerants mean that new measurement devices such as higher-pressure transducers are required. Compatibility between test stand sealing materials, hose assemblies, etc., and the refrigerant must be addressed.
Technical Paper

Analysis of Factors Affecting Rainwater Ingestion into Vehicles HVAC Systems

2001-03-05
2001-01-0293
The penetration of rainwater through the heating ventilation and air conditioning system (HVAC) of a vehicle directly affects the provision of thermal comfort within the vehicle passenger compartment. Present vehicle designs restrict considerably the air-management processes due to reduced space and tighter packaging. The motivation for the study is to get an insight into factors affecting the water ingress phenomenon when a stationary vehicle is subjected to water loading such as heavy rain when parked or waiting in a traffic light or when in a car wash. The test programme made use of a compact closed circuit full-scale automotive climatic wind tunnel that is able to simulate wind, rain and road inclination. The tunnel was developed as part of the collaborative research between the Flow Diagnostics Laboratory (FDL) of the University of Nottingham and Visteon Climate Control Systems [1].
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

IAV's Steam Engine A Unique Approach to Fulfill Emission Levels from SULEV to ZEV

2001-03-05
2001-01-0366
Fulfillment of SULEV standards without catalyst - this is a target engineers at IAV have been working on since the middle of the 1990s. The core of this development is an advanced steam engine with a high performance burner. This burner features extremely low raw pollutant emission. This paper describes new solutions that were found to solve the challenging tasks in the development of such an engine concept.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

DaimlerChrysler's New 1.6L, Multi-Valve 4-Cylinder Engine Series

2001-03-05
2001-01-0330
This paper introduces the new 1.6L engine family, designed and developed by the Chrysler group of DaimlerChrysler Corporation in cooperation with BMW. An overview of the engine's design features is provided, with a detailed review of the performance development process with emphasis on airflow, combustion, thermal management and friction. This information is presented, to provide an understanding of how the engine simultaneously achieves outstanding levels of torque, power, fuel consumption, emissions and idle stability. The use of analytical tools such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) in the optimization of the engine is shown.
Technical Paper

Permanent Mold Gravity Casting Cylinder Block with Hypereutectic Aluminum Liners

2001-03-05
2001-01-0402
A new category of hypereutectic aluminum liners, made by PM route is now available on the market (SILITEC) and it is successfully applied to high-pressure die casting process to produce open deck cylinder blocks. The claimed achievable engine performances over cast-iron liners (weight saving, reduction of oil consumption, optimal heat transfer, wear and friction losses reduction) justify the interest of automotive industry in developing such a technology. The paper will present the experience and the achieved results in permanent mold gravity casting with Silitec liners, where metal flow definition and temperature distribution control make the casting technique more challenging for the manufacturing of closed deck cylinder blocks.
Technical Paper

Machinability of Sintered Distaloy HP-1 Components

2001-03-05
2001-01-0397
Powder metallurgy (P/M) industry has been known for the capability of producing near-net-shape parts. Its specific characteristics have resulted in lower production costs and eliminating many secondary machining. However, more and more P/M parts do require additional operations to fulfil their complex geometry features and surface roughness. Many of the machining factors that influence the machinability of cast and wrought steel parts, such as cutting speed, feedrate, coolant, tool geometry and shape, are also considered in the machining of P/M parts. However, composition, structure, and porosity of P/M are additional factors to be considered. Porosity in the P/M structure can decrease the machinability and shorten the tool life. Different variables have been considered in the material composition. Material densities and the free-machining additive manganese sulphide (MnS) are the two main factors of material composition, which dominate the machining performance.
Technical Paper

P/M High-Speed Steels for Valve Seat Insert Application

2001-03-05
2001-01-0395
The importance of powder technology to the automotive industry is well known, mainly due to its growing potential. This work presents aspects related to high-speed steels for valve seat inserts application. Four series of materials were evaluated: high speed steel M3/2 infiltrated with copper during sintering; high speed steel M3/2 with Cu3P addition; high speed steel M3/2 with Cu3P addition and further copper infiltrated during sintering; high speed steel M3/2 mixed with iron powder. The main material selection topics such as cost, performance, reliability, and environmental aspects were considered. The physical and mechanical properties of the evaluated high-speed steels are presented in terms of densification, hardness, and radial mechanical strength.
Technical Paper

The Development of Sintered Materials Containing Dispersed Die Steel Hard Particles for Intake Valve Seat Inserts

2001-03-05
2001-01-0396
The demands on valve seat inserts are that they should have enhanced wear resistance and machinability using non-environmentally hazardous materials at a reasonably low cost. Research into the possibility of producing a new valve seat insert material which fulfills such demands was therefore made. As a result Hitachi Powdered Metals (HPM) has developed a new material which uses dispersed die steel hard particles in the production of intake valve seat inserts.
Technical Paper

The Estimation of SEAT Values from Transmissibility Data

2001-03-05
2001-01-0392
Seat Effective Amplitude Transmissibility (SEAT) values can be obtained from direct measurements at seat track and top or estimated from transmissibility data and seat track input. Vertical transmissibility was measured for sixteen seats and six subjects on the Ford Vehicle Vibration Simulator, and these 96 functions used to estimate the seat top response for rough road input. SEAT values were calculated, and good correlation to values computed from direct seat top measurements obtained (R2 of 0.86). Averaging transmissibilities and direct seat measurements over the 6 subjects to obtain correlations for the 16 seats improved R2 to 0.94, validating this approach.
X