Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

A Mixed-Mode Fracture Criterion for AHSS Cracking Prediction at Large Strain

2011-04-12
2011-01-0007
Predicting AHSS cracking during crash events and forming processes is an enabling technology for AHSS application. Several fracture criteria including MatFEM and Modified Mohr-Coulomb Criterion were developed recently. However, none of them are designed to cover more fracture modes such as bending fracture and tearing fracture with initial damage. A mixed-mode fracture criterion (MMFC) is proposed and developed to capture multiple fracture modes including in-plane shearing fracture, cross-thickness shearing fracture with bending effect and tearing fracture with initial damage. The associated calibration procedure for this criterion is developed. The criterion is implemented in a commercial FEA code and several lab validations are conducted. The results show its promising potential to predict AHSS cracking at large strain conditions.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Scuffing Resistance of Surface Treated 8625 Alloy Steels

2011-04-12
2011-01-0034
Scuffing is a common source of failure for many mechanical components in automobiles. 8625 alloy steel is commonly used in camshafts, gears, piston pins, shafts, and splines. The purpose of the research is to study the scuffing resistance of non-treated, carburized, nitrocarburized, and carbonitrided 8625 alloy steels. The scuffing resistance of the 8625 alloy steels was determined through pin-on-disk tests. The hardness and microstructure of the disks were analyzed using electron microscopy to determine wear mechanisms for each surface treated steel. The wear mechanisms were then related to the scuff resistance of the various materials.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Journal Article

Effect of Tool Coatings and Tool Steels on Formability of Advanced High Strength Steels

2011-04-12
2011-01-0232
To improve the formability of advanced high strength steels, the interaction between steel sheet, tool material and tool coating was investigated. Square cup drawing experiments were conducted to determine the range of binder forces for forming good cups without wrinkling or splitting. Binder Span of Control (BSC) tests were conducted for DP590, TRIP590, DP780, DP780 EG and DP980 using three uncoated tool steels and two coatings on a standard tool steel substrate. The experimental results indicate that the binder span for forming good cups is sensitive to the choice of tool material and tool coating and the effect of lubricant on formability also varies with tooling material and coating. The obtained binder spans were compared and the best coating plus tool steel combinations for steels of different grades were identified. In addition, roughness of the tooling surface was measured before and after stamping.
Journal Article

A Development of the Fretting Fatigue Analysis Techniques for Engine Aluminum Block

2011-04-12
2011-01-0483
Periodically, engine block-bearing cap structure is subject to the mixed bearing load from combustion and inertia mass of crank. Recently, due to the trend of lightness, cast steel is replaced with aluminum in the material of gasoline engine block. And, the load acting on the main bearing cap is rapidly rising due to the increase of engine power. Therefore, in the development stage, fretting fatigue failures frequently occurred on the block face contacted with the bearing cap. Fretting is a kind of wear which is occurred by micro relative movement. Even though various researches have been made to investigate fretting fatigue failure with FEA approaches, they are not enough to evaluate the phenomenon. In this study, the new CAE method simulating the fretting fatigue failure on the engine block face is developed and the mechanism of the fretting fatigue on the engine block is investigated.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Journal Article

Surface Finish Effects on Fatigue Behavior of Forgings

2011-04-12
2011-01-0488
Fatigue fractures are the most common type of mechanical failures of components and structures. It is widely recognized that surface finish has a significant effect on fatigue behavior. Forgings can be accompanied by significant surface roughness and decarburization. The correction factors used in many mechanical design textbooks to correct for the as-forged surface condition are typically based on data published in the 1940's. It has been found by several investigators that the existing data for as-forged surface condition is too conservative. Such conservative values often result in over-engineered designs of many forged parts, leading not only to increased cost, but also inefficiencies associated with increased weight, such as increased fuel consumption in the automotive industry. In addition, this can reduce forging competitiveness as a manufacturing process in terms of cost and performance prediction in the early design stage, compared to alternative manufacturing processes.
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Journal Article

Formability Analysis Predictions for Preform Annealing of Aluminum Sheet

2011-04-12
2011-01-0533
It is important to understand the accuracy level of the formability analysis for any new process so that correct predictions can be made in product and die design. This report focuses on the formability analysis methodology developed for the preform anneal process. In this process, the aluminum panel is partially formed, annealed to eliminate the cold work from the first step, and then formed to the final shape using the same die. This process has the ability to form more complex parts than conventional aluminum stamping, and has been demonstrated on a complex one-piece door inner and a complex one-piece liftgate inner with AA5182-O3. Both panels only required slight design modifications to the original steel product geometry. This report focuses on the formability analysis correlation with physical panels for the liftgate inner, considering both full panel anneal in a convection oven and local annealing of critical areas.
Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Journal Article

A Study of Anisotropy and Post-Necking Local Fracture Strain of Advanced High Strength Steel with the Utilization of Digital Image Correlation

2011-04-12
2011-01-0992
The automotive industry has a strong need for lightweight materials capable of withstanding large mechanical loads. Advanced high-strength steels (AHSS), which have high tensile strength and formability, show great promise for automotive applications, yet if they are to be more widely used, it's important to understand their deformation behavior; this is particularly important for the development of forming limit diagrams (FLD) used in stamping processes. The goal of the present study was to determine the extent to which anisotropy introduced by the rolling direction affects the local fracture strain. Three grades of dual-phase AHSS and one high-strength low-alloy (HSL A) 50ksi grade steel were tested under plane strain conditions. Half of the samples were loaded along their rolling direction and the other half transverse to it. In order to achieve plane strain conditions, non-standard dogbone samples were loaded on a wide-grip MTS tensile test machine.
Journal Article

Fatigue Life Predictions under General Multiaxial Loading Based on Simple Material Properties

2011-04-12
2011-01-0487
A procedure for fatigue life estimation of components and structures under variable amplitude multiaxial loadings based on simple and commonly available material properties is presented. Different aspects of the analysis consisting of load cycle counting method, plasticity model, fatigue damage parameter, and cumulative damage rule are presented. The only needed material properties for the proposed procedure are hardness and monotonic and axial cyclic deformation properties (HB, K, n, K′ and n′). Rainflow cycle counting method is used for identifying number of cycles. Non-proportional cyclic hardening is estimated from monotonic and axial cyclic deformation behaviors. A critical plane approach is used to quantify fatigue damage under variable amplitude multiaxial loading, where only material hardness is used to estimate the fatigue curve, and where the needed deformation response is estimated based on Tanaka's non-proportionality parameter.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

Development of Automobile Bumper Beam Using Hybrid Process

2011-04-12
2011-01-0006
Recently, application of light-weight materials is increasing in the automobile industry to improve the fuel efficiency. The hybrid bumper beam consisted of the steel and plastic (GMT) is manufactured. If this process is introduced on automobile bumper beam, the mass of bumper beam can be dramatically reduced. In order to satisfy the regulation (FMVSS PART 581, IIHS), executed FEM (finite element method) analysis, low speed and high speed crash have been demonstrated. As a result, it was achieved mass reduction of 17%, while performance is maintained.
Technical Paper

Die Wear Evaluation for Stamping TRIP700 and DP980 B-Pillar

2011-04-12
2011-01-0038
As more and more high strength and advanced high strength steels are being utilized into automotive body panels, structural beams and rails to reduce weight to meet the Café (Corporate Average Fuel Economy) requirements, wear of stamping dies is becoming a major issue. Many types of coatings/surface treatments such as: thermal spray, ion nitriding, chrome plating, PVD, CVD, and TD coatings are being used in stamping plants. Identifying a cost-effective coating and the die material based on the types of the advanced high strength steels is difficult since there is little data available. None the less on the real die. This paper will discuss the evaluation of the coatings and die materials on a B-pillar draw die. The coatings and die materials were chosen based on laboratory design of experiment tests and the typical die materials used in stamping plants.
Technical Paper

Effect of Coating Time on the Performance of Electroless Nickel Coated Steel

2011-04-12
2011-01-0057
Electroless Nickel (EN) coatings are used in automotive application due to its high hardness, uniform thickness and wear resistance. The study deals with the improvement of surface properties of mild steel by the deposition of Ni-P alloy. The steel specimens were EN coated for various time duration ranging from 0.5 to 3 h. The effect of coating time on thickness, structure, hardness and wear of EN coated steel are investigated. It has been found that the coating thickness is uniform and it increases as the coating time increases. There is no significant change in hardness and wear with increase in coating time. The structure of EN coated steel comprises a surface layer of Ni-P alloy deposit which is instrumental in increase in the hardness. Microhardness of EN coated steel is in the range of 500-540 Hv0.025. The wear rate and coefficient of friction of EN coated steel is found to be low compared to the base metal.
Technical Paper

Examination of Crack Growth Behavior in Induction Hardened Material under Torsional Fatigue

2011-04-12
2011-01-0198
Since wear resistance and fatigue strength are key requirements for chassis components, induction hardening is widely used to apply compressive stress for controlling crack growth. Therefore, it is crucial that the influence of defects is examined with compressive residual stress applied to parts. In this report, the relationship between crack depth and compressive residual stress is evaluated using a cylindrical specimen and a torsional fatigue test. The test results were found to be consistent with CAE simulations performed in advance. In the future, it will be necessary to make this method applicable to product design to further improve vehicle safety performance.
Technical Paper

Fretting Fatigue and Wear: Experimental Investigations and Numerical Simulation

2011-04-12
2011-01-0199
Recent trends in mechanical engineering are focusing on optimization of components with respect both to weight and lifetime by using numerical simulation even in the early design stages. For a reliable prediction of in service performance by simulation, both loading as well as different damage and failure mechanisms that may be activated during operation have to be known. In mechanical engineering applications, cyclic loadings are most common. In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, relative motion of contacting bodies combined with high loads transmitted via the contact surface lead to fretting fatigue failure. In this contribution a few selected results of a currently conducted research project are presented. The aim of this study was to examine the material behavior of a surface stressed steel. The influence of the Fretting regime on fatigue properties has been investigated.
X