Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effect of Acetylene on Iso-octane Combustion in an HCCI Engine with NVO

2012-09-10
2012-01-1574
Prior studies have shown that fuel addition during negative valve overlap (NVO) can both increase temperature and alter composition of the charge carried over to main HCCI combustion. Late NVO fuel injection, i.e., near top dead center, can cause piston wetting and subsequent localized rich flames. Since acetylene is a product of rich combustion and is known to advance ignition, it is hypothesized that the species could play a chemical role in enhancing main combustion. The objective of this work is to quantify the effects of acetylene on HCCI combustion. While the research topic is specifically relevant to NVO-fueled HCCI operation, the experiments are conducted without NVO fueling to avoid uncertainties of NVO reforming reactions. Instead, a single post-NVO injection of iso-octane fuels the cycle, and acetylene is seeded into the intake flow at varying concentrations to simulate a reformed product of NVO.
Journal Article

Variable Intake Cam Duration Technologies for Improved Fuel Economy

2012-09-10
2012-01-1641
Using a 3 liter, 4 valves per cylinder, V6 Diesel engine model, this study investigates late intake valve closing (LIVC) time in an effort to reduce the fuel consumption of the engine. Two different intake cam duration technologies for diesel engines are evaluated using a 1-D engine simulation software code. The first method utilized for duration control delays the effective closing of the intake valve by moving one intake cam lobe with respect to the other baseline intake cam lobe. In the second method, the closing of both intake valves is delayed by the introduction of an adjustable dwell period during the closing portion of the valve motion. During this mid-lift dwell period, the lift is held at a constant value until it goes into the closing phase. The systems are evaluated and compared at 4 operating points of varying engine speed and load. At each operating point, while engine load is held constant, intake valve closing time is varied.
Journal Article

Analysis of Ticking Noise from Cam Bearing of a Diesel Engine

2012-09-10
2012-01-1625
Improving idle sound quality as well as reducing idle noise level is increasingly demanded for diesel engines. Therefore, unusual noise occurrence at idle is a serious problem, and the noise must be removed. This paper describes the characteristics and mechanism of ticking noise that is unusual noise radiated from the journal bearing of the camshaft at low idle speeds, based on the mechanism of cavitation in oil film existing between the journal and bearing.
Journal Article

HCCI Engine Application on a Hydraulic Hybrid Bus

2012-09-10
2012-01-1631
After initial trials on Homogeneous Charge Compression Ignition (HCCI) engine design and tests pursuing feedback control to avoid misfire and knocking over wide transient operation ranges, Engineers at the US Environmental Protection Agency's (EPA) National Vehicle Fuel and Emissions Laboratory identified the crucial engine state variable, MRPR (Maximum Rate of Pressure Rise) and successfully controlled a 1.9L HCCI engine in pure HCCI mode [1]. This engine was used to power a hybrid Ford F-150 truck which successfully ran FTP75 tests in 2004. In subsequent research, efforts have been focused on practical issues such as improving transient rate, system simplification for controllability and packaging, application of production grade in-cylinder pressure sensors, cold start, idling and calibration for ambient conditions as well as oxidation catalyst applications for better turbine efficiency and HC and CO emissions control.
Journal Article

Mileage Influence on Conversion Efficiency of Catalytic Converter from In-Use Vehicles

2012-09-10
2012-01-1672
Although many works are published about the achieved advancements in the manufacturing of the catalytic converters (CC) system for vehicle engines and their testing under laboratory conditions, there is a lack in the published research about the mileages influence on their conversion efficiency (CE). Dependence of dual-brick CCs' CE in real-world driving conditions on vehicle mileage is studied for the first time. The CC tested are dismantled from the vehicles with mileage from 0 (new one) up to 150,000 km. The studied CC are evaluated at the engine test bench containing a dynamometer coupled with a spark ignition engine suitable for this type of CC system. Measurements of CC efficiency are performed at four different engine operation regimes: two loaded regimes and two non-load regimes - low and high speed idling. It is found that the oxidation of CO and HC at all four tested regimes took place almost totally in the first CC.
Journal Article

Computational Evaluation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector

2012-09-10
2012-01-1652
The capabilities of various numerical models to accurately account for the onset and development of cavitation in diesel injector nozzles is assessed and evaluated. The numerical predictions of the models are computed, and are compared to measured experimental data and observations. The numerical predictions for actual diesel nozzle geometry have been validated with experimental measurements of the total vapor mass flow rate. This vapor flow is found to be developed along the nozzle length due to the nucleation of the cavitation bubbles inside the diesel injector. The cavitation inception criteria that is used for the quantitative cavitation calculations included vapor quality, voidage, cavitation kinetic energy and cavitation energy. The results indicate that the cavitation simulation model predicts a diffused and gradual vapor distribution inside the nozzle in agreement with the experimental data.
Journal Article

Phenomenological Modelling of Oxygen-Enriched Combustion and Pollutant Formation in Heavy-Duty Diesel Engines using Exhaust Gas Recirculation

2012-09-10
2012-01-1725
A theoretical study is conducted to examine the effects of oxygen enrichment of intake air and exhaust gas recirculation (EGR) on heavy-duty (HD) diesel engine performance characteristics and pollutant emissions. A phenomenological multi-zone model was properly modified and used to assess the impact of intake air oxygen-enhancement and EGR on the operating and environmental behavior of a HD diesel engine under various operating conditions. Initially, an experimental validation was performed to assess the predictive ability of the multi-zone model using existing data from a HD turbocharged common-rail diesel engine at the 12 operating points of the European Stationary Cycle (ESC) considering certain high-pressure cooled EGR rate at each operating point.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Journal Article

Time and Spatially Resolved Measurements of the Interaction of Combusting Diesel Spray and Walls with Elevated Temperatures

2012-09-10
2012-01-1726
The interaction between a combusting diesel spray and a wall at temperatures of 700K and 735K was investigated in a combustion chamber using optical measurement techniques. The temperatures were chosen as they appear in the range of the maximum piston surface temperatures of the latest production engines. Combustion was investigated with a dual camera setup, which is designed to take simultaneous pictures of the UV flame luminosity (FL_UV) and the visible flame luminosity (FL_VIS). The FL_UV is used to measure lean or stoichiometric combustion. The FL_VIS is capable of detecting the thermally excited soot. Mie scattering is used to study the liquid fuel phase. It was found that there is almost no FL_VIS signal visual in the 700K case, but a very strong signal in the 735K case. In general, one might expect that higher wall temperatures lead to an improved mixture formation and, consequently, lower soot production. However, the opposite was detected.
Journal Article

A Monte Carlo Based Turbulent Flame Propagation Model for Predictive SI In-Cylinder Engine Simulations Employing Detailed Chemistry for Accurate Knock Prediction

2012-09-10
2012-01-1680
This paper reports on a turbulent flame propagation model combined with a zero-dimensional two-zone stochastic reactor model (SRM) for efficient predictive SI in-cylinder combustion calculations. The SRM is a probability density function based model utilizing detailed chemistry, which allows for accurate knock prediction. The new model makes it possible to - in addition - study the effects of fuel chemistry on flame propagation, yielding a predictive tool for efficient SI in-cylinder calculations with all benefits of detailed kinetics. The turbulent flame propagation model is based on a recent analytically derived formula by Kolla et al. It was simplified to better suit SI engine modelling, while retaining the features allowing for general application. Parameters which could be assumed constant for a large spectrum of situations were replaced with a small number of user parameters, for which assumed default values were found to provide a good fit to a range of cases.
Journal Article

Study of Unconventional Cycles (Atkinson and Miller) with Mixture Heating as a Means for the Fuel Economy Improvement of a Throttled SI Engine at Part Load

2012-09-10
2012-01-1678
This contribution is focused on an investigation of two well-known techniques, i.e. the modified Atkinson working cycle with a late intake valve closing (LIVC) and the Miller working cycle with an extreme early intake valve closing (EIVC) in order to increase the fuel economy of a throttled SI engine at a part load (high throttled mode). However, the application of the Atkinson and Miller cycle causes a decrease in the in-cylinder charge temperature before the compression stroke. In the case of a constant value of the geometric compression ratio, the in-cylinder charge temperature at the beginning of the combustion is also decreased and the combustion is then slower (compared to a standard Otto cycle). This could negatively influence the indicated efficiency of the unconventional cycle. In order to avoid this, increase in the in-cylinder charge temperature was provided due to mixture heating in the intake manifold of the engine.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Journal Article

Onboard Optimisation of Engine Emissions and Consumption According to Diesel Fuel Quality

2012-09-10
2012-01-1694
In response to the demand to lower CO2 emission, all engine developers face the challenge of drastically reducing fuel consumption. At the same time, they will need to meet future exhaust emission legislation by simultaneously employing internal measures and after treatment systems. Additionally, they will have to deal with increasing fuel variability. As different properties can lead to very different behavior in engine operation, information onboard the vehicle providing the fuel composition would allow to adjust engine operating parameters accordingly, to make the most beneficial use of the available fuel quality. This will be obvious considering future diesel fuels blends, or the ever increasing amount of biodiesel content mixed into Diesel fuel, but could already be interesting considering existing fuel variability faced in Europe or America.
Journal Article

An Innovative 4WD PHEV Utilizing a Series-Parallel Multiple-Regime Architecture

2012-09-10
2012-01-1764
The focus of this paper is the design and implementation of a series-parallel multiple-regime plug-in hybrid electric vehicle (PHEV) using a 2013 Chevrolet Malibu as a platform. The University of Victoria EcoCAR team used a 3-year vehicle development process (VDP) modeled after those used by Tier 1 automotive manufacturers, and maintained by the rules of EcoCAR 2: Plugging into the Future. Intensive research was conducted to determine the ideal architecture selection based on overall greenhouse gas (GHG) emissions, criteria air contaminant (CAC) emissions, fuel economy, petroleum use, and vehicle performance. As a result, a series-parallel design was pursued, using a high power rear traction motor and large BAS electric machine tied to an E85 compatible 4-cylinder internal combustion engine (ICE). This architecture platform provides for multiple regimes of operation including electric only operation provided by the 14.8 kWh lithium ion battery.
Journal Article

Design of a Series-Parallel Plug-in Hybrid Sedan through Modeling and Simulation

2012-09-10
2012-01-1768
EcoCAR 2: Plugging In to the Future is a three-year design competition co-sponsored by General Motors and the Department of Energy. Mississippi State University has designed a plug-in hybrid powertrain for a 2013 Chevrolet Malibu vehicle platform. This vehicle will be capable of 57 miles all-electric range and utility-factor corrected fuel economy of greater than 80 miles per gallon gasoline equivalent (mpgge). All modifications are designed without sacrificing any of the vehicle's utility or performance. Advanced modeling, simulation, and Hardware-in-the-Loop (HIL) simulation capabilities are being used for rapid control prototyping and vehicle design to ensure success in the following years of the competition.
Journal Article

The University of Tennessee's EcoCAR 2 Final Design Report

2012-09-10
2012-01-1771
The University of Tennessee, Knoxville's (UTK) EcoCAR 2 team chose to develop a Plug-In Series-Parallel Hybrid Electric Vehicle that will utilize E-85 fuel. The architecture will be integrated into a 2013 Chevrolet Malibu, donated by General Motors. Throughout the first year of the competition, Tennessee implemented the EcoCAR 2 Vehicle Development Process. The team focused on the development of the supervisory controller through software simulations and Hardware-in-the-Loop (HIL) simulations. Simultaneously, packaging studies were performed via Computer Aided Design (CAD) for powertrain components, as well as the development of the energy storage system, and finite-element analysis (FEA) of modified vehicle components.
Journal Article

Design, Development and Validation of the 2013 Penn State University E85 Series Plug-In Hybrid Vehicle

2012-09-10
2012-01-1773
The Pennsylvania State University Advanced Vehicle Team (PSU AVT) is one of the fifteen (15) participating teams at the EcoCAR 2 “Plugging In to the Future” challenge. The team has worked in the design, development and validation of converting a 2013 Chevrolet Malibu, into an advanced technology hybrid vehicle. The PSU AVT has determined that a Plug-In Series Electric Hybrid architecture best meets the design goals of the EcoCAR 2 competition. The vehicle will utilize a front-wheel drivetrain powered by a Magna E-drive; an Auxiliary Power Unit (APU) based on a naturally aspirated Weber MPE 750 engine, converted for use with E85, coupled to a UQM PowerPhase 75 generator; an Energy Storage System (ESS) based on six A123, 15s3p battery modules; and a Mototron ECM-5554-112-0904 controller as the Master Vehicle Controller (MVC).
Journal Article

Vehicle System Design Process for a Series-Parallel Plug-in Hybrid Electric Vehicle

2012-09-10
2012-01-1774
The Hybrid Electric Vehicle Team of Virginia Tech is one of 15 schools across the United States and Canada currently competing in EcoCAR 2: Plugging In to the Future. EcoCAR 2 is a three year competition that mimics GM's Vehicle Development Process (VDP): design, build, then refine. The first step in the design process is the selection of a powertrain architecture. In the architecture selection process, HEVT considered three options: a Battery Electric Vehicle (BEV), a Series Plug-in Hybrid Electric Vehicle (PHEV), and a Series-Parallel PHEV. The team chose the Series-Parallel PHEV based on powertrain modeling and simulation and CAD packaging analysis. Next, the team looked at a variety of component combinations and selected the one that offered the best capacity to meet competition and team goals. These components are then packaged in the CAD model to plan for component integration. As this integration was happening, a control system was also being developed.
Journal Article

Effects of Variable Speed Supercharging Using a Continuously Variable Planetary on Fuel Economy and Low Speed Torque

2012-09-10
2012-01-1737
This paper describes advances in variable speed supercharging, including benefits for both fuel economy and low speed torque improvement. This work is an extension of the work described in SAE Paper 2012-01-0704 [8]. Using test stand data and state-of-the-art vehicle simulation software, a NuVinci continuously variable planetary (CVP) transmission driving an Eaton R410 supercharger on a 2.2 liter diesel was compared to the same base engine/vehicle with a turbocharger to calculate vehicle fuel economy. The diesel engine was tuned for Tier 2 Bin 5 emissions. Results are presented using several standard drive cycles. A Ford Mustang equipped with a 4.6 liter SI engine and prototype variable speed supercharger has also been constructed and tested, showing low speed torque increases of up to 30%. Dynamometer test results from this effort are presented. The combined results illustrate the promise of variable speed supercharging as a viable option for the next generation of engines.
Journal Article

Experimental Analysis of Engine Exhaust Waste Energy Recovery Using Power Turbine Technology for Light Duty Application

2012-09-10
2012-01-1749
An experimental analysis was executed on a NA (Natural Aspirated) 4-stroke gasoline engine to investigate the potential of exhaust waste energy recovery using power turbine technology for light duty application. Restrictions with decreasing diameter were mounted in the exhaust to simulate different vane positions of a VGT (Variable Geometry Turbine) and in-cylinder pressure measurements were performed to evaluate the effect of increased exhaust back pressure on intake- and exhaust pumping losses and on engine performance. Test points in the engine map were chosen on the basis of high residence time for the vehicle during the NEDC (New European Driving Cycle). The theoretically retrievable power was calculated in case a turbine is mounted instead of a restriction and the net balance was obtained between pumping power losses and recovered energy.
X