Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

2016-04-05
2016-01-0258
Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Technical Paper

Application of the SRM Engine Suite over the Entire Load-Speed Operation of a U.S. EPA Tier 4 Capable IC Engine

2016-04-05
2016-01-0571
Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
Technical Paper

Physics-Based Modeling and Transient Validation of an Organic Rankine Cycle Waste Heat Recovery System for a Heavy-Duty Diesel Engine

2016-04-05
2016-01-0199
This paper presents an Organic Rankine Cycle (ORC) system model for heavy-duty diesel (HDD) applications. The dynamic, physics-based model includes: heat exchangers for parallel exhaust and EGR circuits, compressible vapor working fluid, distribution and flow control valves, a high pressure pump, and a reservoir. A finite volume method is used to model the evaporator, and a pressure drop model is included to improve the accuracy of predictions. Experimental results obtained on a prototype ORC system are used for model calibration and validation. Comparison of predicted and measured values under steady-state conditions is pursued first, followed by the analysis of selected transient events. Validation reveals the model’s ability to track real-world temperature and pressure dynamics of the ORC system. Therefore, this modeling framework is suitable for future system design studies, optimization of ORC power generation, and as a basis for development of control-oriented ORC models.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
X