Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Simultaneous PLIF Imaging of OH and PLII Imaging of Soot for Studying the Late-Cycle Soot Oxidation in an Optical Heavy-Duty Diesel Engine

2016-04-05
2016-01-0723
The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine

2016-04-05
2016-01-0764
The regulatory requirements to lower both greenhouse gases and criteria pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that lower the burden on engine manufacturers to reach these goals may be of particular interest. Naphtha, a fuel with a higher volatility than diesel, but with the ability to be burned under traditional mixing-controlled combustion conditions is one such fuel. The higher volatility promotes fuel-air mixing and when combined with its typically lower aromatic content, leads to reduced soot emissions when compared directly to diesel. Naphtha also has potential to be less energy-intensive at the refinery level, and its use in transportation applications can potentially reduce CO2 emissions on a well-to-wheels basis.
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Technical Paper

Combustion and Emission Characteristics of a Heavy Duty Engine Fueled with Two Ternary Blends of N-Heptane/Iso-Octane and Toluene or Benzaldehyde

2016-04-05
2016-01-0998
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
Technical Paper

Compact, Combined DOC/PM-SCR metal based Exhaust Aftertreatment System for a Hybrid Tugboat Application

2016-04-05
2016-01-0923
Since the new “Regulations for the Prevention of Air Pollution from Ships” of the International Maritime Organization (IMO; MARPOL Annex VI Tier III) became effective, new technologies in marine applications are needed to fulfill the exhaust-gas limits. The reduction rate of the permissible emissions in the emission control areas (ECA) is about 75 % from Tier II to Tier III. To meet these limits, it is necessary to take additional measures, such as installing a Selective Catalytic Reduction (SCR) system. Because harbors are specifically in focus regarding the air quality, a hybrid propulsion system (Diesel-electric) and Exhaust Aftertreatment (EAT) to reduce the emissions and the lifecycle costs by reducing the fuel consumption were planned back in 2012. With the goal in mind of decreasing all relevant emissions, the described compact EAT consists of a Diesel Oxidation Catalyst (DOC), a Particulate Matter (PM) removal and a SCR-catalyst.
Technical Paper

Trade-Offs Between Emissions and Efficiency for Multiple Injections of Neat Biodiesel in a Turbocharged Diesel Engine Using an Enhanced PSO-GA Optimization Strategy

2016-04-05
2016-01-0630
Particle Swarm and the Genetic Algorithm were coupled to optimize multiple performance metrics for the combustion of neat biodiesel in a turbocharged, four cylinder, John Deere engine operating under constant partial load. The enhanced algorithm was used with five inputs including EGR, injection pressure, and the timing/distribution of fuel between a pilot and main injection. A merit function was defined and used to minimize five output parameters including CO, NOx, PM, HC and fuel consumption simultaneously. The combination of PSO and GA yielded convergence to a Pareto regime without the need for excessive engine runs. Results along the Pareto front illustrate the tradeoff between NOx and particulate matter seen in the literature.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
X