Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Energetic Design and Optimization of a Large Photovoltaic Stratospheric Unconventional Feeder Airship

2012-10-22
2012-01-2166
This paper presents a model of energetic consumption and photovoltaic production for a large airship which acts as feeder connecting the ground with a large cruiser. The analysis of energy needs and productivity allows defining both an ideal sizing and operative mission profiles. The specialised mission of this airship is to ascent and descent. It includes also the connection with the airport buildings on the ground and with the cruiser at high altitude. Photovoltaic production has evaluated in terms of hydrogen and electric propulsion. They have estimated both and a calculation methodology has proposed. The evaluation has supported by CFD evaluations on aerodynamic behaviour of the system at various altitudes.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

Rotary Friction Welding Thermal Prediction Model

2011-10-18
2011-01-2723
This paper starting by a previous mathematical model of rotary friction welding by the same authors defines a predictive methodology for a faster setup of rotary friction welding operations by thermal concentrated parameter model which describes temperature as a function of three elemental parameters: time, pressure and torque. It describes present a specific thermal method of calculation and verifies it by experimental data using a very simple experimental setup.
Technical Paper

Optimization of Airships with Constructal Design for Efficiency Method

2013-09-17
2013-01-2168
It is possible to define a novel optimization method, which aims to overcome the traditional Multidisciplinary Design Optimization. It aims to improve Constructal design method to optimize complex systems such as vehicles. The proposed method is based on the constructal principle and it is articulated in different stages: 1 preliminary top-down design process to ensure that the full system has one of the best configurations for the specified goals (contour conditions for constructal optimization could be stated ensuring an effective optimization at full-system level). 2 constructal optimization of the elemental components of the system to maximize the system performances; 3 eventually a competitive comparison between different configurations choosing the better one. The definition of an optimized flying vehicle (an airship) has been produced an example of this improved design method with the objective of minimizing the energy consumption during flight.
Technical Paper

Safety Analysis of an Airship Which Loses Lifting Gas from the Hull

2018-10-30
2018-01-1954
This study investigates the physical phenomena that affect a high-altitude airship in the presence of lifting gas losses from the hull. General atmospheric thermodynamics and basic physical principles are adopted to describe the behavior of an airship with envelope failures that generate buoyant gas dispersion or depressurisation phenomena. Overpressure that could grant to maintain some controllability during a large part of the descent is assessed by mean of the thermodynamic model of the envelope in the presence of gas losses. Optimisation of the inflation parameters is provided and the conditions for avoiding dangerous crashes on the ground and the potential recovery of a damaged vehicle, people and its payload. In particular, the requirements for a slow depressurisation is computed by the equilibrium with the atmosphere and then how can it be possible to sustain controlled navigation are determined.
Technical Paper

Energy Self Sufficient Aircrafts Can Become Reality through New Propulsion Design Approaches

2015-09-15
2015-01-2484
This paper focuses on the key problem of future aeronautics: which relates on energy efficiency and environmental footprint on a scientific point of view. Reducing emissions and increasing the energy efficiency would be both a key element to propel the market and increase the diffusion of personal aerial transport against ground transportation. Novel vehicle concepts and systems will be necessary to propel this innovation which could revolutionize our way of moving. This paper approaches an energetic preliminary design of a vehicle concept which could fulfill this social and cultural objective. Low cost energy efficient vehicles, which could be suitable for personal use with a high economic efficiency and without needs of airports, seem actually a real dream. Otherwise, is it a feasible goal or a scientific dream? Otherwise, a design method based on first and second law and thermodynamic and constructal law could allow reaching those goals.
X