Refine Your Search

Topic

Search Results

Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Journal Article

A Simple Method to Insure Bus-to-Bus Safety in Dual-Voltage Automotive Systems

2014-04-01
2014-01-0244
In some automotive electrical systems, it is advantageous to use power supplies and loads at two or more voltages. Often it is desirable to retain the single wire power architecture, with the car body providing the return circuit. A major difficulty in achieving this end is the matter of dealing with the possibility of a short circuit between feed wires at different voltages. It can be shown that source-side fuses cannot be relied upon to return the system to a safe state in all cases. Substantial effort was applied to this problem in the early years of the 21st century, but the results were less than completely satisfactory. Using entirely separate cable harnesses for each voltage, with physically separated routing, minimizes the risk of such a short occurring in the harness.
Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Technical Paper

Lane-Keeping Behavior and Cognitive Load with Use of Lane Departure Warning

2017-03-28
2017-01-1407
Lane Departure Warning (LDW) systems, along with other types of Advanced Driver Assistance Systems (ADAS), are becoming more common in passenger vehicles, with the general aim of improving driver safety through automation of various aspects of the driving task. Drivers have generally reported satisfaction with ADAS with the exception of LDW systems, which are often rated poorly or even deactivated by drivers. One potential contributor to this negative response may be an increase in the cognitive load associated with lane-keeping when LDW is in use. The present study sought to examine the relationship between LDW, lane-keeping behavior, and concurrent cognitive load, as measured by performance on a secondary task. Participants drove a vehicle equipped with LDW in a demarcated lane on a closed-course test track with and without the LDW system in use over multiple sessions.
Technical Paper

Tractor-Semitrailer Driver and Sleeping Compartment Occupant Responses to Low-Speed Impacts

2012-04-16
2012-01-0566
Low-speed collisions between tractor-semitrailers and passenger vehicles may result in large areas of visible damage to the passenger vehicle, but often produce limited damage to the tractor-semitrailer. Despite this, such accidents may lead to assertions of serious injury to the tractor driver and/or sleeper compartment occupant. Research regarding the impact environment and resulting injury potential of the occupants during these types of impacts is limited. This research investigated driver and sleeper compartment occupant responses to relatively low-speed and low-acceleration impact events. Five crash tests involving impact between a tractor-semitrailer and a passenger car were conducted. The test vehicles were a van semitrailer pulled by a tractor and three identical mid-sized sedans. The occupants of the tractor included a human driver and an un-instrumented Hybrid III 50th-percentile-male anthropomorphic test device (ATD).
Journal Article

Infrastructure-Based Sensor Data Capture Systems for Measurement of Operational Safety Assessment (OSA) Metrics

2021-04-06
2021-01-0175
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) needs to be quantified for an understanding of risk, requiring the measurement of parameters as they relate to AVs and human driven vehicles alike. In prior work by the Institute of Automated Mobility (IAM), operational safety metrics were introduced as part of an operational safety assessment (OSA) methodology that provide quantification of behavioral safety of AVs and human-driven vehicles as they interact with each other and other road users. To calculate OSA metrics, the data capture system must accurately and precisely determine position, velocity, acceleration, and geometrical relationships between various safety-critical traffic participants. The design of an infrastructure-based system that is intended to capture the data required for calculation of OSA metrics is addressed in this paper.
Technical Paper

Driver Reactions in a Vehicle with Collision Warning and Mitigation Technology

2015-04-14
2015-01-1411
Advanced Driver Assistive System (ADAS) technologies have been introduced as the automotive industry moves towards autonomous driving. One ADAS technology with the potential for substantial safety benefits is forward collision warning and mitigation (FCWM), which is designed to warn drivers of imminent front-end collisions, potentiate driver braking responses, and apply the vehicle's brakes autonomously. Although the proliferation of FCWM technologies can, in many ways, mitigate the necessity of a timely braking response by a driver in an emergency situation, how these systems affect a driver's overall ability to safely, efficiently, and comfortably operate a motor vehicle remains unclear. Exponent conducted a closed-course evaluation of drivers' reactions to an imminent forward collision event while driving an FCWM-equipped vehicle, either with or without a secondary task administered through a hands-free cell phone.
Journal Article

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

2019-04-02
2019-01-0420
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells.
Technical Paper

Accelerator-to-Brake Pedal Transition Movements during On-Road Stopping in an Older Population

2017-03-28
2017-01-1396
Unintended acceleration events due to pedal misapplication have been shown to occur more frequently in older vs. younger drivers. While such occurrences are well documented, the nature of these movement errors is not well-characterized in common pedal error scenarios: namely, on-road, non-emergency stopping or slowing maneuvers. It is commonly assumed that drivers move in a ballistic or “direct hit” trajectory from the accelerator to the brake pedal. However, recent simulator studies show that drivers do not always move directly between pedals, with older drivers displaying more variable foot trajectories than younger drivers. Our study investigated pedal movement trajectories in older drivers ages 67.9 ± 5.2 years (7 males, 8 females) during on-road driving in response to variable traffic light conditions. Three different sedans and a pick-up truck were utilized.
Journal Article

Using the Instantaneous Center of Rotation to Examine the Influence of Yaw Rate on Occupant Kinematics in Eccentric Planar Collisions

2022-03-29
2022-01-0826
The biomechanical injury assessment for an occupant in a planar vehicle-to-vehicle collision often requires a kinematic analysis of impact-related occupant motion. This analysis becomes more complex when the collision force is eccentric to the center of gravity on a struck vehicle because the vehicle kinematics include both translation and potentially significant yaw rotational rates. This study examines the significance of vehicle yaw on occupant kinematics in eccentric (off-center) planar collisions. The paper describes the calculation of the instantaneous center of rotation (ICR) in a yawing vehicle post-impact and explores how mapping this quantity may inform an occupant’s trajectory when using a free particle “occupant” analysis. The study initially analyzed the impact-related occupant motion for all the outboard seat positions in a minivan using several hypothetical examples of eccentric vehicle-to-vehicle crash configurations with varying PDOF, delta-V, and yaw rate.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

The Effect of Crash Severity and Structural Intrusion on ATD Responses in Rear-End Crashes

2020-04-14
2020-01-1224
This study assesses vehicle and occupant responses in six vehicle-to-vehicle high-speed rear impact crash tests conducted at the Exponent Test and Engineering Center. The struck vehicle delta Vs ranged from 32 to 76 km/h and the vehicle centerline offsets varied from 5.7 to 114 cm. Five of the six tests were conducted with Hybrid III ATDs (Anthropometric Test Device) with two tests using the 50th male belted in the driver seat, one test with an unbelted 50th male in the driver seat, one test with a 95th male belted in the driver seat, and one with the 5th female lap belted in the left rear seat. All tests included vehicle instrumentation and three tests included ATD instrumentation. The ATD responses were analyzed and compared to corresponding IARVs (injury assessment reference values). Ground-based and onboard vehicle videos were synchronized with the vehicle kinematic data and biomechanical responses.
Journal Article

Acceleration and Braking Performance of School Buses

2012-04-16
2012-01-0593
There is a limited amount of data currently available on the acceleration and braking performances of school buses. This paper analyzes the braking performance of various Type A and Type C school buses with hydraulic and air brakes. The effect of ABS and Non-ABS systems as well as driver experience is discussed. A comparison with passenger car braking performance is presented. The acceleration of a school bus is also presented. Evaluations of “normal” and “rapid” accelerations are presented for Type A and Type B buses. A comparison with commonly used acceleration values for various vehicles is presented.
Technical Paper

Evaluation of Occupant Kinematics and Kinetics during Moderate Severity Simulated Frontal Impacts with and without Frontal Airbag Deployment

2023-04-11
2023-01-0559
Airbag and seat belt pretensioner deployment characteristics depend on multiple factors, such as the magnitude, direction, and rate of vehicle deceleration as detected by vehicle crash sensors and evaluated by vehicle-specific algorithms. Frontal airbag and pretensioner deployments are likely to be commanded during frontal crash events with high initial vehicle deceleration typically associated with high vehicle change in velocity (delta-V). However, within a range of moderate changes in vehicle speeds, referred to as the “gray zone,” a vehicle-specific algorithm may or may not command deployment depending on crash pulse parameters and occupant sensing, among other items. Publicly available testing in the moderate-speed range is lacking and would be useful to evaluate the effects of airbag and pretensioner deployment on occupant kinematics and loading.
Technical Paper

Motorcycle Rider Inputs During Typical Maneuvers

2020-04-14
2020-01-1000
The purpose of this research is to document representative examples of control inputs and body positioning experienced riders use to control a motorcycle through maneuvers representative of those encountered during real-world operation. There is limited publicly available data that tracks the magnitude or direction of steering head rotation, steering torque input, etc. used by a rider to initiate and exit a turn as well as maintaining directional control during maneuvers ranging from slow parking lot turns to high speed lane changes. Using Exponent’s Test and Engineering Center (TEC) track and skid pad, a course was defined that included several maneuvers at various speeds and radii. A previous paper [1] investigated the influence of rider kinematics (weight shift) on motorcycle control.
Technical Paper

Accident Statistical Distributions from NASS CDS - An Update

2020-04-14
2020-01-0518
The National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) contains an abundance of field crash data. As technology advances and the database continues to grow over the years, the statistical significance of the data increases and trends can be observed. The purpose of this paper is to provide a broad-based, up-to-date, reference resource with respect to commonly sought-after crash statistics. Charts include up-to-date crash distributions by Delta-V and impact direction with corresponding injury severity rates. Rollover data is also analyzed, as well as historical trends for injury severity, belt usage, air bag availability, and the availability of vehicle safety technology.
Technical Paper

Injury Rates by Crash Severity, Belt Use and Head Restraint Type and Performance in Rear Impacts

2020-04-14
2020-01-1223
This study assesses the exposure distribution and injury rate (MAIS 4+F) to front-outboard non-ejected occupants by crash severity, belt use and head restraint type and damage in rear impacts using 1997-2015 NASS-CDS data. Rear crashes with a delta V <24 km/h (15 mph) accounted for 71% of all exposed occupants. The rate of MAIS 4+F increased with delta V and was higher for unbelted than belted occupants with a rate of 11.7% ± 5.2% and 6.0% ± 1.5% respectively in 48+ km/h (30 mph) delta V. Approximately 12% of front-outboard occupants were in seats equipped with an integral head restraint and 86% were with an adjustable head restraint, irrespective of crash severity. The overall injury rate was 0.14% ± 0.05% and 0.22% ± 0.06%, respectively. It was higher in cases where the head restraint was listed as “damaged”. Thirteen cases involving a lap-shoulder belted occupant in a front-outboard seat in which “damage” to the adjustable head restraint was identified.
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
X