Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering

2009-04-20
2009-01-0652
Flow fields and fuel distribution play a critical role in developing the combustion process inside the cylinders of piston engines. This has prompted the development of measurement and diagnostic capabilities including laser techniques like Doppler Global Velocimetry (DGV). The paper provides an overview of the basics of DGV and the type of results that can be obtained. It also includes a short comparison to Particle Image Velocimetry (PIV) which is a popular alternative method. Furthermore, it is shown that DGV can be used simultaneously in combination with droplet distribution visualization inside cylinders based on Mie scattering.
Technical Paper

Battery Simulation

2001-03-05
2001-01-0776
Battery simulation by a DSP-controlled high current power supply is used to improve repeatability and comparability of starting tests, especially at low temperatures. The simulator's algorithm calculates the internal resistance of the battery by a timely constant resistor and a variable resistor representing the actual discharge history. The output voltage of the simulator is set as a function of internal resistor and load current with temperature and state of charge as setup parameter. The simulator was evaluated in cold start testing in comparison to real batteries. As a result, batteries are simulated with high repeatability. Deviations to real battery behavior are in the range of test to test deviations using real batteries.
Technical Paper

A New Approach for a Multi-Fuel, Torque Based ECU Concept using Automatic Code Generation

2001-03-05
2001-01-0267
The software design of this new engine control unit is based on a unique and homogenous torque structure. All input signals are converted into torque equivalents and a torque coordinator determines their influence on the final torque delivered to the powertrain. The basic torque structure is independent on the type of fuel and can be used for gasoline, diesel, or CNG injection systems. This allows better use of custom specific algorithms and facilitates reusability, which is supported by the graphical design tool that creates all modules using automatic code generation. Injection specific algorithms can be linked to the software by simply setting a software switch.
Technical Paper

GALOP - IAV's Universal Speed Ratio Selection Strategy for ATs, CVTs and Hybrid Drivetrains

2002-03-04
2002-01-1256
IAV has developed a strategy for transmission ratio selection that serves AMT, ATs, CVTs and Hybrid drivetrains. Since the power demand dependent strategy is applicable to all transmission types, it is possible to implement the same character of vehicle behavior. As a result, a manufacturer specific vehicle characteristic can be given to the complete range of powertrains. This universal field of application is made possible by the choice of ratio being dependent on the drivers demand of traction power instead of the usual dependency concerning the accelerator position and the vehicle velocity. Therefore, as opposed to conventional shifting strategies, the selected transmission ratio guarantees the demanded traction power. In the case of insufficient power at the actual transmission ratio, the engine speed will be increased.
Technical Paper

Cold Start Simulation and Test on DISI Engines Utilizing a Multi-Zone Vaporization Approach

2012-04-16
2012-01-0402
Recent years have witnessed a dramatic increase in global ethanol production, while cellulosic feedstock or the algae-based production approach make more sustainable ethanol production foreseeable in many countries. The ethanol produced will increasingly penetrate the markets not only as blending component, but also as main fuel component, boosting demand for flex-fuel vehicles. One of the main challenges for flex-fuel vehicles is the cold start due to the poor vapor pressure of ethanol. This is detrimental to starting capability in DISI engines in particular, with increased cylinder wall wetting causing higher oil dilution. The most efficient solution for DISI engines is a smart injection strategy, enabling fuel vaporization during injection in the compression stroke. But this requires optimum injection parameters such as injection timing, split ratio and rail pressure.
Technical Paper

Scene Based Safety Functions for Pedestrian Detection Systems

2013-01-09
2013-26-0020
The protection of pedestrians from injuries by accidental collision is a primary focus of the automotive industry and of government legislation [1]. In this area, scientists and developers are faced with a multitude of requirements. Complex scenes are to be analyzed. The wide spectrum of where pedestrians and cyclists appear on the road, weather, and light conditions are just examples. Data fusion of raw or preprocessed signals for several sensors (cameras, radar, lidar, ultrasonic) need to be considered as well. Accordingly, algorithms are very complex. When moving from prototypic environments to embedded systems, additional constraints must be considered. Limited system resources drive the need to simplify and optimize for technical and economic reasons. With all these constraints, how can the safety functions be safe-guarded? This submission considers scene-based methods for the development of vehicle functions from prototype to series production focusing on functional safety.
Technical Paper

NVH Optimization of Driveline with Mathematical Optimization Methods

2013-01-09
2013-26-0089
The Noise, Vibration and Harshness (NVH) behaviour of the powertrain, the driveline and the mounting is playing a very important role in the vehicle development process. The method described in this paper presents the coupling of Multi Body Simulation (MBS) with mathematical optimization tools exemplary for a powertrain mounting at a passenger car vehicle. It is shown, how this approach is integrated in the IAV - development process for validation and for optimization, i.e. finding the best solution for reaching the NVH targets. In early stage of development process, torsional vibration models are used to simulate e.g. the decoupling between engine and transmission. To simulate further physical effects, the models must be more and more detailed with a lot of additional parameter. One challenge for valid models is the parameter identification. The process to do this successfully with mathematical methods will be described.
Technical Paper

A New Hardware-Assisted Inlet Port Development Process for Diesel Engines Using Doppler Global Velocimetry

2005-04-11
2005-01-0640
As more virtual product development is integrated into the mass-production development process and overall development times are shortened, efficient intake-port design requires closer cooperation between design, simulation and test engineers. Doppler Global Velocimetry (DGV) has become an important link in the overall intake-port development process as it provides 3D-vector fields of flow velocity. Hence, it can be used to make direct comparisons with 3D-CFD-simulation results. The present paper describes the hardware-assisted inlet port development process for diesel engines, the cooperation among port design, 3D-CFD-simulation with the creation of alternative geometries and DGV flow-measurement of preferred variants with their capability of checking and improving simulation results.
Technical Paper

A New Approach for Process-Oriented and Tool Based Calibration Tasks for Engine Management Systems

2006-04-03
2006-01-1570
This paper describes a new approach for the calibration of engine management systems based on a newly developed calibration tool. This approach is based on the idea to design the calibration process of a certain calibration task by means of a computer based stateflow/workflow diagram. By means of library methods for certain calibration routines, the calibration engineer can design his calibration process in a Stateflow diagram and then transfer this function in an executable file, guiding and supporting the engineer for performing his task. Due to this approach a documentation of the calibration process, the performed calibration task and a guided and automated calibration process can be performed.
Technical Paper

Software Quality is Not a Coincidence: A Model-Based Test Case Generator

2005-04-11
2005-01-1664
IAV GmbH is currently developing a test case generator, which uses information from Simulink®/Stateflow® models to generate test cases automatically. These test cases can then be applied during software tests for an ECU to show conformance to the original model. Using predefined rules, test cases for individual blocks are generated and converted into test cases for a whole model. The test cases can be saved as a XML file. Then, this file can be converted into test script languages which are used by tools for test execution. With the test case generator, the time-consuming and error-prone task of manual test case definition can be automated, thus decreasing test expenses for each test while increasing test quality.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Comparison and Evaluation of a New Innovative Drive Concept for the Air Conditioning Compressor of Electric Vehicles

2015-01-14
2015-26-0045
The development of energy efficient air conditioning systems for electric vehicles is an ever increasing challenge, because the cooling as well as the heating of the passenger compartment reduces the cruising range dramatically. Electric cars are usually equipped with a scroll compressor and a separate electric motor with appropriate power electronics. However, this solution is critical in terms of the installation space, the weight and also the costs. Therefore, an innovative and energy efficient drivetrain structure for electric vehicles was developed, which integrates the motor of the A/C-compressor directly into the drivetrain. Thus it is possible to switch off the compressor motor and to use the main motor for the drive of the compressor at certain driving situations. As a result, the operating point of the main motor can be shifted to a better efficiency.
Technical Paper

Electrification and Automation of Manual Gearbox Technology to Reduce Fuel Consumption and CO2-Emissions of Passenger Cars

2019-01-09
2019-26-0140
To meet the targets of Indian future emission legislation, an electrification and automation of today’s manual transmission technology is necessary. For this reason, IAV invented an electrified automated transmission family, based on well-known manual transmission technology. This low-cost automated manual transmission (AMT) approach is equipped with a 48 V electric machine and can be used as pure electric or hybrid drivetrain. Furthermore, it is possible to realize power shifts by using just one dry friction element. A small number of standard components combined with a low voltage electric machine and an electromechanical actuation system is sufficient to create a maximum of flexibility to meet future emission fleet targets, without having the disadvantageous high costs for a high-voltage electric system. To detect the optimal powertrain configuration, IAV used a unique advance development tool called Powertrain Synthesis.
Journal Article

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
Technical Paper

Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells

2023-08-28
2023-24-0154
The majority of powertrain types considered important contributors to achieving the CO2 targets in the transportation sector employ a battery as an energy storage device. The need for batteries is hence expected to grow drastically with increasing market share of CO2-optimized powertrain concepts. The resulting huge pressure on the development of future electrochemical energy storage systems necessitates the application of advanced methodologies enabling a fast and cost-efficient concept definition and optimization process. This paper presents a model-based methodology for the optimization of BEV thermal management concept layouts and operation strategies targeting minimized energy consumption. Starting at the vehicle level, the proposed methodology combines appropriate representations of all primary powertrain components with 1D cooling and refrigerant circuit models and focuses on their interaction with the battery chemistry.
Technical Paper

Assessing the Efficiency of a New Gasoline Compression Ignition (GCI) Concept

2020-09-15
2020-01-2068
A practical Gasoline Compression Ignition (GCI) concept is presented that works on standard European 95 RON E10 gasoline over the whole speed/load range. A spark is employed to assist the gasoline autoignition at low loads; this avoids the requirement of a complex cam profile to control the local mixture temperature for reliable autoignition. The combustion phasing is controlled by the injection pattern and timing, and a sufficient degree of stratification is needed to control the maximum rate of pressure rise and prevent knock. With active control of the swirl level, the combustion system is found to be relatively robust against variability in charge motion, and subtle differences in fuel reactivity. Results show that the new concept can achieve very low fuel consumption over a significant portion of the speed/load map, equivalent to diesel efficiency. The efficiency is worse than an equivalent diesel engine only at low load where the combustion assistance operates.
X