Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Engine Cooling Module Sizing Using Combined 1-Dimensional and CFD Modeling Tools

2009-04-20
2009-01-1177
Engine cooling module air flows depend on package components and vehicle front end geometry. For years, in the early stages of vehicle development, front end geometry air flows were determined from 3/8 scale models or retrofit of similar existing vehicles. As time to market has become much shorter, finite element modeling of air flows is the only tool available. This paper describes how finite element simulations of front end air flows can be run early in the development program independent of any specific engine cooling module configuration and then coupled with traditional one-dimensional component performance models to predict cooling module air flows. The CFD simulation thus replaces the previous scale model testing process. The CFD simulations are used to determine the two parameters that characterize the front end geometry flow resistance (recovery coefficient and internal loss coefficient).
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Journal Article

Application of Extension Evaluation Method in Development of Novel Eco-friendly Brake Materials

2009-10-11
2009-01-3019
Extenics is a new cross discipline to study rules and methods of solving contradictory problems in the real world. The basic concepts and theoretical frame of extenics are briefly introduced in this paper. Based on the merit of extenics, the extension evaluation method was applied to evaluate the brake materials according to a five-grade criterion established in this study. Considering the results computed by the original and simplified models, the similar conclusions were made: all four brake samples, marked A - D, were evaluated in the first grade based on the calculated dependence degrees, and sample B was judged as the best performing friction material with the highest dependence degree and the lowest wear rate.
Journal Article

Free-Form Optimization Method for Designing Automotive Shell Structures

2011-04-12
2011-01-0064
In this paper, we present a parameter-free, or a node-based optimization method for finding the smooth optimal free-form of automotive shell structures, including global and local curvature distributions such as beads or embossed ribs. The design problems dealt with in this paper involve a stiffness problem. Stiffness is maximized using the compliance as an objective functional. The optimum design problem is formulated as a distributed-parameter, or non-parametric, shape optimization problem under the assumptions that the shell is varied in the normal direction to the surface and the thickness is constant. The shape gradient function and the optimality conditions are then theoretically derived. The optimum free-form, or optimal curvature distribution, is determined by applying the derived shape gradient function in the normal direction to the shell surface as pseudo external forces to vary the surface and to minimize the objective functional.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Influence of Vehicle Front End Design on Pedestrian Lower Leg Performance for SUV Class Vehicle

2011-04-12
2011-01-0084
Accident statistics shows pedestrian accident fatalities as one of the important concerns globally. In view of this, new test protocols for pedestrian safety have been drafted in regulation as well as in consumer group. Also as per new ENCAP requirements, pedestrian safety assessment is used as one of the four assessment criteria's (Adult protection, child safety, pedestrian safety, safety assist) in deciding the overall vehicle safety. Hence today importance of pedestrian safety is perceived as never before in vehicle development program. Basically pedestrian safety evaluation involves subsystem level (head form, upper leg form and lower leg form) impact tests representing human body parts, at specific region on test vehicle with injury limits to decide the severity of impact. In general these injuries are governed by vehicle styling, vehicle stiffness, hard points clearances from vehicle exterior like bonnet, bumper etc.
Journal Article

Optimized Design Solutions for Roof Strength Using Advanced High Strength Steels

2010-04-12
2010-01-0214
In August 2005, National Highway Traffic Safety Administration (NHTSA) proposed to increase the roof strength requirement under Federal Motor Vehicle Safety Standard (FMVSS) 216 from 1.5 to 2.5 times unloaded vehicle weight (UVW). To meet the new requirement with a minimum impact on vehicle weight and cost, the automotive community is working actively to develop improved roof architectures using advanced high strength steels (AHSS) and other lightweight materials such as structural foam. The objective of this study is to develop an optimized steel-only solution with low material and part-manufacturing costs. Since the new regulation will present a particular challenge to the roof architectures of large vans, pickup trucks and SUVs due to their large mass and size, a validated roof crush model on a B-Pillar-less light truck is utilized in this study.
Journal Article

Message Packing Algorithm for CAN-Based Legacy Control Systems Mixed with CAN and FlexRay

2010-04-12
2010-01-0685
Hard real-time systems such as automotive control systems have to guarantee that strict deadlines are met for applications. Recent automotive control systems have been network systems that have combined event-triggered with time-triggered networks, i.e., Controller Area Network (CAN) and FlexRay. A CAN-FlexRay gateway has to execute real-time message transfers from CAN to FlexRay and from FlexRay to CAN to guarantee that communication deadlines are met. Most gateways in the automotive control systems select messages according to the priority of the messages and pack them into frames. However, when many events of same kinds occur within the short period, the gateway cannot guarantee that communication deadlines for time-triggered and first event-triggered messages will be met because many event-triggered messages prevent time-triggered messages from being packed into frame.
Journal Article

Investigation on Pelvis Injury Indices Using a Human Finite Element Model

2010-04-12
2010-01-1169
For accurately predicting different fracture patterns of the pelvis frequently observed in pedestrian accidents with SUV/Mini-van, human finite element (FE) models have been developed. Although those models with failure representation can predict occurrence or nonoccurrence of fractures, quantitative estimation of probability of fractures is not possible. For human models without failure representation, typically stress or strain of elements is used for fracture prediction. However, numerous elements must be evaluated when fracture location is not predetermined. This study investigated methodology for accurately predicting probability of pelvic fractures using a minimal number of output parameters. The hood edge and upper and lower parts of the bumper were chosen for representing vehicle fronts. These components were modeled using rigid surfaces with the stiffness of them represented by springs, to constitute 3-component models.
Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Journal Article

Dynamic Response of Vehicle Roof Structure and ATD Neck Loading During Dolly Rollover Tests

2010-04-12
2010-01-0515
The debate surrounding roof deformation and occupant injury potential has existed in the automotive community for over 30 years. In analysis of real-world rollovers, assessment of roof deformation and occupant compartment space starts with the post-accident roof position. Dynamic movement of the roof structure during a rollover sequence is generally acknowledged but quantification of the dynamic roof displacement has been limited. Previous assessment of dynamic roof deformation has been generally limited to review of the video footage from staged rollover events. Rollover testing for the evaluation of injury potential has typically been studied utilizing instrumented test dummies, on-board and off-board cameras, and measurements of residual crush. This study introduces an analysis of previously undocumented real-time data to be considered in the evaluation of the roof structure's dynamic behavior during a rollover event.
Journal Article

Effect of Beading on Radiated Noise

2010-06-09
2010-01-1407
In the automotive industry, the use of beading is widely spread. Beads are primarily used to stiffen the floor and dash panels. The aim is to reduce vibration levels and hopefully at the same time reduce radiated noise. Beading has a positive effect close to the first panel mode's natural frequency however it can have a negative effect at all other frequencies. Typically, engineers assume a radiation efficiency of “1” (one) over the whole frequency range for simplicity or lack of available implemented formulation in their simulation tools. This assumption directs the investigation at reducing the vibration levels only. This approach can be misleading because even though radiation efficiency tends to “1” (one) above coincident frequency it is not the case below coincidence. While increasing stiffness reduces vibration levels, it also increases radiation efficiency. This can yield to higher levels of radiated noise.
Journal Article

Development of New Concept Two-Wheel Steering System for Motorcycles

2013-10-15
2013-32-9106
This paper describes the development of a new concept two-wheel steering system for realizing motorcycle motion control. By considering the whole of the main frame as the rear-wheel steering axis, it was possible to move the rear-wheel steering system from the conventional installation position at the rear arm to the head pipe. As a result, the developed two-wheel steering system is both lightweight and compact. This two-wheel steering system was installed in a motorcycle, and starting and stopping tests were carried out with two people riding on the motorcycle. The test results confirmed that the two-wheel steering system is capable of changing the motion characteristics of the motorcycle in actual riding. Furthermore, by calculating the equivalent wheel alignment of this system, this paper also theoretically demonstrates that these changes in motion characteristics are caused by changes in caster and trail.
Journal Article

Influence of Feature Lines of Vehicle Hood Styling on Headform Kinematics and Injury Evaluation in Car-to-Pedestrian Impact Simulations

2014-04-01
2014-01-0518
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Journal Article

Integrated Low Temperature Cooling System Development in Turbo Charged Vehicle Application

2014-04-01
2014-01-0638
The Low Temperature Cooling (LTC) system is commonly developed for secondary cooling function requirements, such as forced induction air cooling, and HEV power electronics module cooling. The large heat transfer capacity of coolant allows for very compact water-cooled heat exchangers to be installed remotely for better underhood aerodynamic characteristics and more compact packaging design. An integrated LTC loop developed on a Hyundai 2.0L Turbo Charged vehicle extends a traditional WCAC (Water-cooled charged air cooler) application to include a water-cooled condenser (WCOND) module. Unlike other published LTC system design approaches, this research project emphasizes underhood airflow improvement strategy and focuses on heat transfer efficiency. This paper discusses the integrated LTC loop configuration, Low Temperature Radiator (LTR) design, coolant flow control, and others.
Journal Article

Evaluation of Trim Absorption to Exterior Dynamic and Acoustic Excitations Using a Hybrid Physical-Modal Approach

2014-06-30
2014-01-2080
The NVH study of trimmed vehicle body is essential in improving the passenger comfort and optimizing the vehicle weight. Efficient modal finite-element approaches are widely used in the automotive industry for investigating the frequency response of large vibro-acoustic systems involving a body structure coupled to an acoustic cavity. In order to accurately account for the localized and frequency-dependant damping mechanism of the trim components, a direct physical approach is however preferred. Thus, a hybrid modal-physical approach combines both efficiency and accuracy for large trimmed body analysis. Dynamic loads and exterior acoustic loads can then be applied on the trimmed body model in order to evaluate the transfer functions between these loads and the acoustic response in the car compartment.
Journal Article

Modeling and Validation of Rapid Prototyping Related Available Workspace

2014-04-01
2014-01-0751
Path planning and re-planning for serial 6 degree of freedom (DOF) robotic systems is challenging due to complex kinematic structure and application conditions which affects the robot's tool frame position, orientation and singularity avoidance. These three characteristics represent the key elements for production planning and layout design of the automated manufacturing systems. The robot trajectory represents series of connected points in 3D space. Each point is defined with its position and orientation related to the robot's base frames or predefined user frame. The robot will move from point to point using the desired motion type (linear, arc, or joint). The trajectory planning requires first to check if robot can reach the selected part(s). This can be simply done by placing the part(s) inside the robot's work envelope. The robot's work envelope represents a set of all robots' reachable points without considering their orientation.
Journal Article

Design, Analysis, and Simulation of an Automotive Carbon Fiber Monocoque Chassis

2014-04-01
2014-01-1052
While many composite monocoque and semi-monocoque chassis have been built there is very little open literature on how to design one. This paper considers a variety of issues related to composite monocoque design of an automotive chassis with particular emphasis on designing a Formula SAE or other race car monocoque chassis. The main deformation modes and loads considered are longitudinal torsion, local bending around mounting points, and vertical bending. The paper first considers the design of elements of an isotropic material monocoque that has satisfactory torsional, hardpoint, and vertical bending stiffness. The isotropic analysis is used to gain insight and acquire knowledge about the behavior of shells and monocoque structures when subjected to a vehicle's applied loads. The isotropic modeling is then used to set initial design targets for a full anisotropic composite analysis.
Journal Article

A Monolithic Approach to Simulate the Cooling Behavior of Disk Brakes

2013-09-30
2013-01-2046
In the present paper we introduce a monolithic CFD approach to simulate the cooling-down characteristics of disk brakes. To ensure a strong coupling between fluid and solid domain the overall transient thermal problem is solved within a single flow solver during the complete cooling-down process. We employ a fully implicit second order solution procedure. The experimental configuration consists of an inertia dynamometer including a generic 17 inch vented front disk with caliper, dust shield, bearing and knuckle. The validation is carried out for three different air flow velocities, with and without dust shield. The temperature is monitored via two thermocouples embedded into outer and inner rotor cheeks. In order to quantify the cooling-down characteristics, regression analysis are conducted on the temperature curves. The obtained cooling coefficient serves as comparison between measurement and computation.
X