Refine Your Search

Topic

Author

Affiliation

Search Results

Video

AVTA - Plug-in Electric Vehicle Demonstration Results

2012-03-29
The Idaho National Laboratory is collecting data from grid-connected electric drive vehicles and charging infrastructure that have been deployed across the United States in five large-scale demonstrations funded by the U.S. Department of Energy. These demonstrations include The EV Project infrastructure demonstration, led by ECOtality North America; Coulomb Technologies� ChargePoint America infrastructure demonstration; General Motors� Chevrolet Volt extended range electric vehicle demonstration; Chrysler�s Ram plug-in hybrid electric vehicle demonstration; and the Ford Escape plug-in hybrid electric vehicle advanced research fleet demonstration. This presentation describes real-world vehicle and charging infrastructure usage observed during the early stages of these demonstrations. Presenter John Smart, Idaho National Lab.
Video

Introduction of the EV Project – the Largest Deployment of Electric Vehicles and Electric Vehicle Charging Infrastructures Ever Undertaken

2011-11-04
Electric vehicle codes and standards play a key role in deployment of interoperable charging and communication infrastructure. Harmonization of those standards on a global basis, even though they are not identical, they need to be compatible. There are a comprehensive set of EV standards, even standards to ensure that the EV, EVSE, energy measurement and electric utility are compatible (SAE J2953). This presentation is a summary of the state of standards and some of the commercial deployment of equipment that meets these standards. Presenter Eric Rask, Argonne National Laboratory
Video

Spotlight on Design Insight: Dynamic Wireless Charging

2016-04-12
In “Dynamic Wireless Charging Technology”, an engineer from NextEnergy in Detroit, Michigan explains the difference between static and dynamic electric vehicle charging, indicating what future developments will look like. And a professor from the Korea Advanced Institute of Science and Technology/KAIST describes their experience with dynamically charging buses already in use in their campus. This episode highlights: The technology allowing vehicles to be charged while in motion, through wireless power transfer Why this type of technology will help make vehicles more efficient and easier to charge, as they will require smaller batteries How the OLEV (Online Electric Vehicle) works following the trail of power transmitting coils Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Spotlight on Design: Automotive Charging Infrastructure: Vehicle and Grid Integration

2016-01-30
“Spotlight on Design” features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing cost, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode “Automotive Charging Infrastructure: Vehicle and Grid Integration” (21:00), engineers from NextEnergy and an infrastructure expert from General Motors explain how technologies are rapidly converging to power electric vehicles and support the overall electric grid. This episode highlights: How the fast expansion of charging infrastructure is changing the way electric and hybrid-electric vehicles are gaining the confidence of consumers.
Video

Spotlight on Design Insight: Automated Vehicles: Converging Sensor Data

2015-04-16
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode “Automated Vehicles: Converging Sensor Data” (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Video

Review and Assessment of the ISO 26262 Draft Road Vehicle - Functional Safety

2012-09-18
ISO 26262 is the first comprehensive automotive safety standard that addresses the safety of the growing number of electric/electronic and software intensive features in today's road vehicles. This paper assesses the standard's ability to provide safety assurance. The strengths of the standard are: (1) emphasizing safety management and safety culture; (2) prescribing a system engineering development process; (3) setting up a framework for hazard elimination early in the design process; (4) disassociating system safety risk assessment from component probabilistic failure rate. The third and fourth strengths are noteworthy departure from the philosophy of IEC61508. This standard has taken much-needed and very positive steps towards ensuring the functional safety of the modern road vehicles. SAE publications from industry show a lot of enthusiasm towards this standard.
Video

Automotive Functional Safety Standard ISO 26262 and the Current Challenges

2021-03-20
The ISO 26262, titled "Road vehicles - Functional safety," is a Functional Safety standard that gives a guidance to reduce the risks to tolerable level by providing feasible requirements and processes. This standard is an adaptation of the Functional Safety standard IEC 61508 for Automotive Electrical/Electronic and programmable electronic Systems. The standard covers the development of safety-related electrical, electronic and programmable electronics systems in the road vehicles. It will have a significant impact on the way such systems are designed, developed, integrated and validated for safety. Functional safety of embedded systems has become an integral part in automotive engineering activities due to the recently released safety standard ISO 26262. One main challenge is to perform development activities compliant to the standard and provide the respective documentation.
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Book

SAE International Journals Complete Set

2010-04-30
This set includes: SAE International Journal of Aerospace March 2010 - Volume 2 Issue 1 SAE International Journal of Commercial Vehicles October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Engines October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Fuels and Lubricants October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Materials and Manufacturing October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2 SAE International Journal of Passenger Cars - Electronic and Electrical Systems October 2009 - Volume 2, Issue 1 SAE International Journal of Passenger Cars - Mechanical Systems October 2009 - Volume 2, Issue 1 March 2010 - Volume 2, Issue 2
Book

Counterfeit Electronic Parts: Supply Chains at Risk (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Just how prevalent is the problem of counterfeit electronic parts? What are the consequences of using sub-par components in safety or mission critical systems? The Federal Aviation Administration estimates that 2% of the 26 million airline parts installed each year are counterfeit, accounting for more than 520,000 units, maybe more.
Standard

Megawatt Charging System for Electric Vehicles

2021-12-15
WIP
J3271
This document describes the megawatt-level DC charging system requirements for couplers/inlets, cables, cooling, communication and interoperability. The intended application is for commercial vehicles with larger battery packs requiring higher charging rates for moderate dwell time. A simplified analog safety signaling approach is used for connection-detection to guarantee de-energized state for unmated couplers with superimposed high speed data for EVSE-EV charging control and other value added services.
Standard

STANDARD FOR D.C. BRUSH MOTOR – HVAC BLOWERS

1999-02-01
HISTORICAL
USCAR6
This standard sets forth the performance and durability requirements for 12-volt, D.C. brush-type electric motors used for automobile Heating, Ventilation, and Air Conditioning (HVAC) blowers and outlines Production Validation and Continuing Conformance testing.
Journal Article

Digital Maps, Connectivity and Electric Vehicles - Enhancing the EV/PHEV Ownership Experience

2010-10-19
2010-01-2316
Electrification of the automobile is a growing trend and will create both challenges and opportunities for the vehicle manufacturer, road network infrastructure and driver. In addition to innovative fundamental battery and power transfer technologies, electric vehicles will integrate unique driver interfaces, road intelligence, traffic awareness and wireless data communication to provide a complete support system. This networked vehicle will improve efficiency, increase cruising range and contribute to the overall driving enjoyment of an electric or plug-in hybrid-electric vehicle. Through tailored applications created by content and service providers the driver will identify the most efficient travel routes, learn efficient driving behaviors, avoid energy-wasting situations, locate charging stations and have confidence in reaching a destination and returning home.
Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Journal Article

Model-Based Design Case Study: Low Cost Audio Head Unit

2011-04-12
2011-01-0052
The use of model-based software development in automotive applications has increased in recent years. Current vehicles contain millions of lines of code, and millions of dollars are spent each year fixing software issues. Most new features are software controlled and many times include distributed functionality, resulting in increased vehicle software content and accelerated complexity. To handle rapid change, OEMs and suppliers must work together to accelerate software development and testing. As development processes adapt to meet this challenge, model-based design can provide a solution. Model-based design is a broad development approach that is applied to a variety of applications in various industries. This paper reviews a project using the MATLAB/Simulink/Stateflow environment to complete a functional model of a low cost radio.
Journal Article

Wideband Multi-Service Automotive Antenna Conformed to a Curved Surface

2011-04-12
2011-01-0047
Vehicles produced in decades past were fitted with very few antennas. In most cases only an AM or FM antenna was required. In contrast to this, today's vehicles are fitted with a plethora of antennas to receive a wide variety of signals at a number of different frequencies. This work presents a wideband radiating structure capable of sending and receiving many of the signals required in a modern vehicle from a single device. The antenna is based on Planar Inverted Cone Antenna geometry. The effect of bending or curving the antenna substrate is investigated at values in the range that may be required for vehicular integration.
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
X