Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Honda R&D Technical Review April 2021

2021-04-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the April 2021 issue with 104 pages containing 12 papers focusing on the following latest topics: Technology for Prediction of Contactor Noise for Electric-powered Vehicle Batteries Reduction of Internal Resistance in High Capacity Lithium-ion Batteries with 3D Lattice-structured Electrode Predictive Technique for Seat Belt Submarining Injury by Triaxial Iliac Load Cell
Collection

Safety Test Methodology and Structural Crashworthiness and Occupant Safety, 2010

2010-06-01
The 16 papers in this technical paper colection present advancement of auto safety-related technologies that deal with roof crush testing, pedestrian safety, front, side and rear impact, simulation of interior head impact, FE study of factors on risk of KTH injuries in frontal impact, CAE methods and testing, and field modeling and assessment techniques.
Collection

Rear Impact, Side Impact, and Rollover, 2010

2010-06-01
This technical paper collection contains 20 papers presenting new technologies and research in the area of vehicle rear-end collision, rollover collision and lateral impacts. Papers may be related to analysis of crash compatibility, statistical data analysis, design of vehicle systems, biomechanics and dummy development. To see a listing of papers included in this special publication, click on the papers link below.
Book

Sensors: Advanced Safety (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing costs, improving quality, safety or environmental impact, and achieving regulatory compliance. Sensors are essential to the safety, efficiency, and dependability of modern vehicles. Crash sensors can anticipate a collision faster than humans would, and tire pressure sensors can alert the driver or pilot in case action is needed. In the episode "Sensors: Advanced Safety" (20:36) Continental engineers look at the evolution of passive safety systems, discuss the changes in sensors over the last ten years and what is coming next. Engineers at Meggitt demonstrate how tire pressure monitoring system sensors for aerospace are built and tested.
Book

Automated Vehicles: Sensors and Future Technologies (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Automated Vehicles: Sensors and Future Technologies" (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
Book

Insight: Automated Vehicles: Converging Sensor Data (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode "Automated Vehicles: Converging Sensor Data" (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

The Challenges of Electrification in Premium Luxury Vehicles

2012-03-27
JLR is on track to develop stop-start, parallel hybrid and plug-in parallel hybrid vehicles in the next few years. Plug-in hybridization is arguably the most suitable technology for large, premium luxury vehicles for the foreseeable future. Range_e is a UK based demonstrator for a plug-in hybrid system and has brought into sharp focus the attribute issues and wider challenges that need to be taken into consideration when moving towards production. Presenter Paul Bostock, Jaguar Land Rover
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Video

SAE Demo Day in Tampa - Highlights

2018-08-14
In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Video

Review and Assessment of the ISO 26262 Draft Road Vehicle - Functional Safety

2012-09-18
ISO 26262 is the first comprehensive automotive safety standard that addresses the safety of the growing number of electric/electronic and software intensive features in today's road vehicles. This paper assesses the standard's ability to provide safety assurance. The strengths of the standard are: (1) emphasizing safety management and safety culture; (2) prescribing a system engineering development process; (3) setting up a framework for hazard elimination early in the design process; (4) disassociating system safety risk assessment from component probabilistic failure rate. The third and fourth strengths are noteworthy departure from the philosophy of IEC61508. This standard has taken much-needed and very positive steps towards ensuring the functional safety of the modern road vehicles. SAE publications from industry show a lot of enthusiasm towards this standard.
Video

Automotive Functional Safety Standard ISO 26262 and the Current Challenges

2021-03-20
The ISO 26262, titled "Road vehicles - Functional safety," is a Functional Safety standard that gives a guidance to reduce the risks to tolerable level by providing feasible requirements and processes. This standard is an adaptation of the Functional Safety standard IEC 61508 for Automotive Electrical/Electronic and programmable electronic Systems. The standard covers the development of safety-related electrical, electronic and programmable electronics systems in the road vehicles. It will have a significant impact on the way such systems are designed, developed, integrated and validated for safety. Functional safety of embedded systems has become an integral part in automotive engineering activities due to the recently released safety standard ISO 26262. One main challenge is to perform development activities compliant to the standard and provide the respective documentation.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video

ThrottleCharger; Fuel Economy Improvement using Throttling Work for Electric Power Generation.

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
X