Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Collection

Powertrain NVH, 2017

2017-03-28
The papers in this collection reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

Instantaneous Engine Speed Measurement and Processing for MFB50 Evaluation

2009-11-02
2009-01-2747
Evaluation of MFB50 is very useful for combustion control, since it gives an evaluation of the combustion process effectiveness. Real-time monitoring its value enables to detect for example the kind of combustion that is taking place (useful for example for HCCI applications), or could provide important information to improve real-time combustion control. While it is possible to determine the position where the 50% of mass burned inside the cylinder is reached using an in-cylinder pressure sensor, this work proposes to obtain this information from the engine speed fluctuation measurement. In-cylinder pressure sensors in fact are still not so common for on-board applications, since their cost will constitute an important portion of the whole engine control system cost.
Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

NVH of Electric Vehicles with Range Extender

2010-06-09
2010-01-1404
Intensive R&D is currently performed worldwide on hybrid and electric vehicles. For full electric vehicles the driving range is limited by the capacity of currently available batteries. If such a vehicle shall increase its driving range some range extending backup system should be available. Such a Range Extender is a small system of combustion engine and electric generator which produces the required electricity for charging the batteries in time. Since the acoustic response of an electric motor driving the vehicle and of a combustion engine as part of a Range Extender is very different by nature an extensive acoustic tuning of the Range Extender is necessary to meet the requirements of exterior vehicle noise and passenger comfort. This paper describes the NVH (noise, vibration & harshness) development work of a range extender within the AVL approach of an electrically driven passenger car with range extender.
Journal Article

Application of Laminated Composite Materials in Vehicle Design: Theories and Analyses of Composite Beams

2013-05-13
2013-01-1943
With rising fuel prices, lightweight structures and materials (like composites) are receiving more attention. Composite materials offer high stiffness to weight and strength to weight ratios when compared with traditional metallic materials. Traditionally, composite materials were generally costly which made them only attractive to very limited industries (e.g., the defense industry). Advances in their manufacturing and new innovations have brought the cost of these materials down and made them reasonably competitive. They have gained more and more usage in the last 3 decades in the aerospace industry and have recently been gaining more usage in the automotive industry. In automotive design, they yield lighter structures which have positive impact on attributes like fuel economy, emission and others. Proper modeling and analyses need to be performed to make sure that other attributes (e.g. durability, noise, vibration and harshness or NVH) are assessed properly and remain competitive.
Journal Article

Vibration Behavior Analysis of Tire Bending Mode Exciting Lateral Axial Forces

2013-05-13
2013-01-1911
The demand to reduce noise in the passenger cars is increasing. Tire vibration characteristics must be considered when studying road noise because of the strong interaction between tire vibration characteristics and interior car noise. Car manufacturers are keenly interested in studies on the prediction of NVH (Noise, Vibration and Harshness) performance, including viewing tires as substructure. Recently, studies have illustrated the effect that tire lateral bending mode have has on road noise, while most past studies of tire vibration focused on the circumference mode, which excited the vertical spindle force. Therefore, further study of tire lateral bending mode is necessary. Modeling of the tire lateral bending mode is described in this paper. First, lateral spindle force is measured under tire rolling conditions. Second, experimental modal analysis is performed to grasp tire lateral bending mode. Finally, a tire vibration model is built using the cylindrical shell theory.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

New Vibration Control Methodology in Engine Mount System for Low-Fuel Consumption Engines

2013-04-08
2013-01-1703
With growing demands for better fuel economy and reduced carbon emissions there is a need for smaller and more fuel efficient engines. At the same time, to improve passenger comfort there are also demands placed on improved vehicle quietness [1]. A Homogeneous Charge Compression Ignition (HCCI) system or a higher compression ratio system can be used to obtain better fuel economy but the enhanced combustion rate causes an increase in engine vibration in the medium to high frequency range [2, 3]. To ensure vehicle quietness, this issue of structure-borne noise that is transmitted from the engine mounts to the body must be addressed. In this paper a simple anti-vibration active mount system is introduced that can significantly reduce structure-borne noise at medium to high frequencies. This is achieved by adding mass to the insulator which leads to resonance at lower frequencies, in order to obtain double anti-vibration performance.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Journal Article

Research on Vibration Isolation of Semi-Active Controlled Hydraulic Engine Mount with Air Spring

2014-04-01
2014-01-0008
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Journal Article

Active Control of Engine-Induced Vibrations in Automotive Vehicles through LPV Gain Scheduling

2014-04-01
2014-01-1686
In this paper, a control approach for the active reduction of engine-induced vibrations in automotive vehicles is presented. As a controller, a discrete-time multiple input multiple output (MIMO) disturbance-observer-based state-feedback controller is designed using linear parameter-varying (LPV) gain-scheduling techniques. The use of LPV control design techniques has the advantage that the stability of the overall system is guaranteed even when the gain-scheduling parameters are changing. The control approach is validated experimentally with an active vibration control system installed in a Golf VI Variant. Two inertia-mass actuators (shakers) and two accelerometers are attached to the engine mounts. Nine frequency components are targeted in the reduction and excellent results are achieved in vehicle driving tests for constant and time-varying engine speeds.
Journal Article

Aqueous Heat Reflective Coating for Engine Compartment Isolators

2014-06-30
2014-01-2082
To satisfy the increased expectations of customers, engineers are challenged to increase fuel economy while also improving noise, vibration, and harshness (NVH) performance. In order to improve fuel economy, engine compartment designs have become more compact with reduced air flow. Elevated temperatures caused by these designs can degrade the durability and acoustic performance of the fibrous acoustic insulator material. A typical method for protecting insulators from elevated temperatures is to apply an aluminum foil patch to the surface. However, foil patches can restrict the insulator's ability to absorb sound and can be difficult to apply to complex part shapes. Foil patches can be perforated to allow the insulator to absorb sound, but there is a cost penalty as well as potential for long term performance degradation due to blocked perforations. Since NVH targets are also increasing, it's important to maximize the benefit of each part.
Journal Article

NVH Integration of Twin Charger Direct Injected Gasoline Engine

2014-06-30
2014-01-2087
The increased focus and demands on the reduction of fuel consumption and CO2 requires the automotive industry to develop and introduce new and more energy efficient powertrain concepts. The extensive utilisation of downsizing concepts, such as boosting, leads to significant challenges in noise, vibration and harshness (NVH) integration. This is in conflict with the market expectation on the vehicle's acoustic refinement, which plays an increasingly important role in terms of product perception, especially in the premium or luxury segment. The introduction of the twin charger boosting system, i.e. combining super and turbo charging devices, enables downsizing/speeding in order to achieve improved fuel economy as well as short time-to-torque, while maintaining high driving dynamics. This concept requires also extensive consideration to NVH integration. The NVH challenges when integrating a roots type supercharger are very extensive.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Application of Laminated Composite Materials in Vehicle Design: Theories and Analyses of Composite Shells

2013-05-13
2013-01-1989
With rising fuel prices, light weight structures and materials (like composites) are receiving more attention. Composite materials offer high stiffness to weight ratio when compared with traditional metallic materials. Traditionally, composite materials were generally costly which made them only attractive to very limited industries (e.g., the defense industry). Advances in their manufacturing and new innovations have brought the cost of these materials down and made them reasonably competitive. They have gained more and more usage in the last 3 decades in the aerospace industry and have recently been gaining more usage in the automotive industry. In automotive design, they yield lighter structures which have positive impact on attributes like fuel economy, emission and others. Proper modeling and analyses need to be performed to make sure that other attributes (e.g. noise, vibration and harshness or NVH) are assessed properly and remain competitive.
Technical Paper

Design Improvement on Condenser Assembly under Dynamic Behaviour through Vibro-Acoustic Analysis

2021-08-31
2021-01-1065
The automotive air-conditioning (AC) components fitted on passenger car having high vibration make significant impact on vehicle noise and harshness inside the cabin. Hence, it is necessary to reduce the vibrations within the permissible limit. This can be done by improving dynamic behavior of the assembly under vehicle fitments. The present paper explains about design improvement carried out on the condenser assembly to increase strength of the mounting brackets as well as to reduce the noise level by reducing the vibrations. Modal frequency response analysis has been performed on the existing condenser and found that there was relatively high vibration on the assembly due to low stiffness of the bracket. From the acoustic analysis, it was observed that the noise is occurring due to high vibration at resonance condition. By doing the design changes on the assembly, modal frequency increased relatively. Accordingly, noise level also reduced.
Technical Paper

Influence of Powertrain Mount Stiffness Progressivity on Buzz, Squeak & Rattle Noise for Electric Vehicle

2021-08-31
2021-01-1089
For a modified electric vehicle on the same internal combustion engine (ICE) platform, the primary consideration is to have no change in long member and pendulum type conventional engine mounting system to save development cost and timeline. Electric vehicle (EV) powertrain is comparatively lighter w.r.t the ICE. As a result, the engine mount’s static preload setting point or powertrain centre of gravity under static powertrain load gets changed resulting in a change in stiffness for the same engine mount. As the static stiffness changes, the dynamic stiffness and modal frequency also change. The 6 degrees of freedom (DOF) modal frequency has almost no impact on powertrain modes as EV powertrain modes, mainly, the motor frequency, is much higher than engine mount Eigen modes. In this scenario, the gap management gets disturbed due to less static preload, and non-linearity gets affected.
X