Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 3 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 1 of 3)

2017-10-12
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

Visionary's Take: An Engineering Journey into the Marketplace (Part 2 of 3)

2017-10-12
We're working to solve the STEM crisis and building the next generation of engineers and scientists with our Kindergarten-College programs supported by the SAE Foundation: - A World In Motion (AWIM) Kindergarten-8 - Collegiate Design Series (CDS) College Help us inspire curiosity in STEM: find out more at saefoundation.org today.
Video

Development of High Strength Polymer Based Bearing for Automotive Parts under Boundary Lubrication

2012-05-23
Composite bearings of PTFE as the base material have been widely used for automotive parts. However, in recent years, due to downsizing, faster sliding speeds, and tendency to increase the bearing load with high performance, particularly for boundary lubrication conditions, the PTFE-based composite bearing is often worn, making it difficult to apply to some applications. A high strength polymer was selected as an alternative to PTFE base material, and the mechanical properties and performance in a start-stop test, reciprocating sliding test and seizure test were evaluated. Focusing on the characteristics of high strength, by applying a PEEK resin, in each evaluation, it was confirmed that superior performance was achieved compared with a conventional PTFE based composite bearing. Presenter Yohei Takada, Daido Metal Co., Ltd.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Metallurgical Approach for Improving Life and Brinell Resistance in Wheel Hub Units

2017-09-17
Abstract Raceway Brinell damage is one major cause of wheel bearing (hub unit) noise during driving. Original Equipment Manufacturer (OEM) customers have asked continuously for its improvement to the wheel bearing supply base. Generally, raceway Brinelling in a wheel hub unit is a consequence of metallic yielding from high external loading in a severe environment usually involving a side impact to the wheel and tire. Thus, increasing the yielding strength of steel can lead to higher resistance to Brinell damage. Both the outer ring and hub based on Generation 3 (Gen. 3) wheel unit are typically manufactured using by AISI 1055 bearing quality steel (BQS); these components undergo controlled cooling to establish the core properties then case hardening via induction hardening (IH). This paper presents a modified grade of steel and its IH design that targets longer life and improves Brinell resistance developed by ILJIN AMRC (Advanced Materials Research Center).
Journal Article

Research on the Influence of Bench Installation Conditions on Simulation of Engine Main Bearing Load

2009-06-15
2009-01-1978
The simulation of main bearing load plays an important role in engine multi-body dynamics simulation, seemingly influencing the simulation of strength, vibration and acoustics. It is necessary to conduct engine bench test to validate the result of simulation. More attention has been paid to the flexibility of engine blocks and crankshafts, but not on the installing conditions of engine test bench, such as the stiffness of mounts, the presence of the connecting flange and the elasticity of shaft coupling, which are easy to ignore. The work presented here focuses on the influence of bench installation conditions on the multi-body dynamics simulation of an engine. A flexible multi-body dynamics model of a 4100QB diesel engine is built by employing the modal synthesis technique in the software ADAMS. By comparing the simulation results of different models, the effects of the connecting flange, the stiffness of mounts and the elasticity of shaft coupling are discussed.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

Instantaneous Engine Speed Measurement and Processing for MFB50 Evaluation

2009-11-02
2009-01-2747
Evaluation of MFB50 is very useful for combustion control, since it gives an evaluation of the combustion process effectiveness. Real-time monitoring its value enables to detect for example the kind of combustion that is taking place (useful for example for HCCI applications), or could provide important information to improve real-time combustion control. While it is possible to determine the position where the 50% of mass burned inside the cylinder is reached using an in-cylinder pressure sensor, this work proposes to obtain this information from the engine speed fluctuation measurement. In-cylinder pressure sensors in fact are still not so common for on-board applications, since their cost will constitute an important portion of the whole engine control system cost.
Journal Article

Crankshaft Peak Firing Pressure Bearing Capability Enhancement

2010-05-05
2010-01-1527
To uprate a 6-Cylinder In-line engine from 123 kW to 165 kW in power and upgrade the emission from Euro-2 to Euro-3 it was required to go for higher peak-firing pressures (PFP). The capability of Engine's Crankshaft to withstand the PFP was increased from 125 bar to 150 bar, maintaining the same cylinder centre distance. A crank-train model was used to achieve the required crankshaft strength for infinite fatigue life. The three aspects of crankshaft design, namely, crank strength, bearing selection, journal-pin lubrication and torsional vibration were considered during the design stage. The strength to withstand 150 bar PFP was achieved by increasing the crank web-thickness. To maintain the same cylinder centre distance, crankpin and main-journal lengths were reduced. Increased throw stiffness was achieved by increasing the crankpin diameter to improve crankshaft torsional behaviour.
Journal Article

Contact Fatigue Wear Evaluation of Thrust Rolling Bearings Lubricated With Greases With Molybdenum Disulfide Or Graphite

2010-05-05
2010-01-1546
The wear of thrust 51100 rolling bearings was investigated and their dissipative responses in a bench test rig were associated to their heating, elastic energy of mechanical vibration and Sound Pressure Level [dB], regarding two greases, both from the same supplier, being one with graphite and the other with Molybdenum Disulfide. The samples were commercially acquired and submitted to a normal load of 450±5N and 3100±30 CPM, determined after the screening tests. Four variables were measured: temperature [K], electrical power [W], global velocity vibration [mm/s] and Sound Pressure Level [dB]. After 106 cycles, the tracks were analyzed by Optical Microscopy. The bearings lubricated with the grease with graphite showed different responses in relation to the ones lubricated with MoS2 thrust bearings. The signal of the signatures and the damage morphology are presented and discussed.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

New Vibration Control Methodology in Engine Mount System for Low-Fuel Consumption Engines

2013-04-08
2013-01-1703
With growing demands for better fuel economy and reduced carbon emissions there is a need for smaller and more fuel efficient engines. At the same time, to improve passenger comfort there are also demands placed on improved vehicle quietness [1]. A Homogeneous Charge Compression Ignition (HCCI) system or a higher compression ratio system can be used to obtain better fuel economy but the enhanced combustion rate causes an increase in engine vibration in the medium to high frequency range [2, 3]. To ensure vehicle quietness, this issue of structure-borne noise that is transmitted from the engine mounts to the body must be addressed. In this paper a simple anti-vibration active mount system is introduced that can significantly reduce structure-borne noise at medium to high frequencies. This is achieved by adding mass to the insulator which leads to resonance at lower frequencies, in order to obtain double anti-vibration performance.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Journal Article

Time-Domain Dynamic Analysis of Helical Gears with Reduced Housing Model

2013-05-13
2013-01-1898
In this paper we present a time-domain dynamic analysis of a helical gear box with different housing models using a unique finite element-contact mechanics solver. The analysis includes detail contact modeling between gear pairs along with the dynamics of gear bodies, shafts, bearings, etc. Inclusion of the housing in the dynamic analysis not only increases the fidelity of the model but also helps estimate important NVH metrics, such as dynamic load and vibration transmission to the base, sound radiation by the gearbox, etc. Two different housing models are considered. In the first, the housing is represented by a full FE mesh, and in the second, the housing is replaced by a reduced model of condensed stiffness and mass matrices. Component Mode Synthesis (CMS) methods are employed to obtain the reduced housing model. Results from both the models are successfully compared to justify the use of reduced housing model for further studies.
Journal Article

Research on Vibration Isolation of Semi-Active Controlled Hydraulic Engine Mount with Air Spring

2014-04-01
2014-01-0008
Aiming at the abnormal vibration of driver seat of a passenger car in idle condition, vibration acceleration of engine, frame and seat rail was tested to identify vibration sources. Order tracking and spectrogram analysis indicated that the second order self-excitation of engine was the main cause. To solve the problem, semi-active controlled hydraulic engine mount with air spring of which characteristics could shift between a high dynamic stiffness and a low one was applied. Then the structure and principle of the mount with variable characteristics was introduced and control mode was analyzed. Dynamic characteristics were obtained by bench test. With sample mount applied, vibration of seat rail was tested again in multiple vehicle and engine working conditions. Dates showed that abnormal vibration in idle condition was extremely reduced and the mount could also meet the requirement of engine to dynamic stiffness in driving conditions.
Journal Article

Active Control of Engine-Induced Vibrations in Automotive Vehicles through LPV Gain Scheduling

2014-04-01
2014-01-1686
In this paper, a control approach for the active reduction of engine-induced vibrations in automotive vehicles is presented. As a controller, a discrete-time multiple input multiple output (MIMO) disturbance-observer-based state-feedback controller is designed using linear parameter-varying (LPV) gain-scheduling techniques. The use of LPV control design techniques has the advantage that the stability of the overall system is guaranteed even when the gain-scheduling parameters are changing. The control approach is validated experimentally with an active vibration control system installed in a Golf VI Variant. Two inertia-mass actuators (shakers) and two accelerometers are attached to the engine mounts. Nine frequency components are targeted in the reduction and excellent results are achieved in vehicle driving tests for constant and time-varying engine speeds.
Journal Article

Study of the Effects upon Vehicle Stability Exerted by Tie Rod End Clearance Under Slalom Maneuver

2014-05-10
2014-01-9122
Tie rod end clearance is an important parameter influencing automobile stability under slalom maneuver. In this paper the steering mechanism is simplified into a plane linkage mechanism and an analysis of the effects on vehicle stability exerted by kinematic pair clearance under slalom maneuver is also presented. A 4DOF mathematical model of vehicle maneuvering system is thus being built. On the basis of this model, we adopt the numerical analysis method to conduct a simulated analysis about the stability of prototype vehicle side slip angle as the clearance parameter changes. According to the results, vehicle slalom dynamics behaviors manifest itself in shifting from single cycle to chaos directly. With the increase in clearance, nearly no change is displayed in the upper critical frequency of vehicle slalom instability. However, an increasing rise is shown in the lower critical frequency.
X