Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

An Improved Human Biodynamic Model Considering the Interaction between Feet and Ground

2015-04-14
2015-01-0612
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
Technical Paper

Modeling and Optimization of Vehicle Acceleration and Fuel Economy Performance with Uncertainty Based on Modelica

2009-04-20
2009-01-0232
To design and optimize the vehicle driveline is necessary to decrease the fuel consumption and improve dynamic performance. This paper describes a methodology to optimize the driveline design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A new and flexible tool for modeling multi-domain systems, Modelica, is used to carry out the modeling and analysis of a vehicle, and the multi-domain model is developed to determine the optimum design in terms of fuel economy, with determinability. Secondly, a robust optimization is carried out to find the optimum design considering uncertainty. The results indicate that the fuel economy and dynamic performance are improved greatly.
Technical Paper

Flexible Multibody Dynamics of Sewing Machine with Multi-Clearance Joints

2017-03-28
2017-01-0422
The sewing machine has been widely used in various aspects of life and it is essential to study its kinematic and dynamic characteristics. A dynamic model of flexible multi-link mechanism for sewing machine including joints with clearance is established to analysis its dynamic response in the present work. The configuration of the sewing machine mainly included five subsystems, feeding mechanism, needle bar mechanism, looper mechanism, shearing mechanism and adjusting mechanism. Since the sewing machine mainly consist of linkage mechanisms that are connected by revolute joints and translational joints, the existence of clearances in the joints and the flexibility of crankshafts and linkage are important factors that affect the dynamic performance. Even little clearance can lead to vibration and fatigue phenomena, lack of precision or even make overall behavior as random.
Technical Paper

FSAE Race Car Dynamics and Trajectory Optimization Considering Aerodynamic Effects

2018-04-03
2018-01-0821
The aerodynamic effects not only directly affect the acceleration and the fuel economy of the race car, but also have a great influence on the handling of the race car. In this paper, the vehicle multibody dynamic model with “double-wishbone suspension” and “rack and pinion steering” is established, in order to obtain aerodynamic parameters, the aerodynamic model of the vehicle is established, and the aerodynamic parameters were calculated by using CFD. In order to obtain the optimal travel track, the track model is established, according to weights allocation of the smallest curvature of each curve and the shortest curve to optimize the optimal route for racing. The influence of aerodynamic effects on the stability of vehicle control is analyzed through simulation of Endurance Racing to evaluate the maximum lateral acceleration、roll angle and other performance.
Technical Paper

Semi-Active Control of ISD In-Wheel Motors Suspension with Dynamic Vibration Absorber

2022-03-29
2022-01-0285
Electric vehicles driven by in-wheel-motor have the advantages of compact structure and high transmission efficiency, which is one of the most ideal energy-saving, environmentally friendly, and safe driving forms in the future. However, the addition of the in-wheel-motor significantly increases the unsprung mass of the vehicle, resulting in a decrease in the mass ratio of the vehicle body to the wheel, which will deteriorate the ride comfort and safety of the vehicle. To improve the vibration performance of in-wheel-motor driven vehicles, a semi-active inerter-spring-damper (ISD) suspension with in-wheel-motor (IWM) dynamic vibration absorber (DVA) of the electric wheel is proposed in this paper. Firstly, a structure of in-wheel-motor DVA is proposed, which converts the motor into a dynamic vibration absorber of the wheel to suppress the vibration of the unsprung mass.
Technical Paper

Influence of Dynamic Vibration Absorbers on Bending Vibration in Vehicle Propeller Shaft

2018-04-03
2018-01-1226
Increased focus on vehicle comfort and ride has led the automotive industry to look into low vibration, noise and hardness alternative designs for powertrain system components. In this paper, the vibration theory and dynamic vibration absorber (DVA) theory is presented. The modal analysis of propeller shaft assembly has been accomplished. Based on dynamic vibration absorber principle, performance parameters of dynamic vibration absorber are matched and structure is also designed. LMS equipment is applied to verify the natural frequency of absorber samples. The matching of stiffness and damping of DVA is presented. The dynamic response of drive shaft system based on the mass ratio of DVA is researched in this paper. Results from simulations and tests indicates that the amplitude of propeller shaft resonance can be effectively reduced by attaching a DVA to the long propeller shaft.
Technical Paper

Experimental Study of Unbalanced Multiple Propeller Shaft

2018-04-03
2018-01-1398
The imbalance of propeller shaft is an excitation to the vehicle structure and causes noise and vibration. This paper presents an experimental study of effects of propeller shaft imbalance on vehicle vibration characteristics. A two-piece propeller shaft with unbalance is used in real vehicle test. The vehicle vibration is characterized by accelerations of the cabin floor and of the bearing which supports the propeller shaft. Through the experiment, some interesting phenomena are observed.
Technical Paper

Fuel Economy Optimization with Integrated Modeling for Vehicle Thermal Management System

2016-04-05
2016-01-0225
Vehicle Thermal Management System (VTMS) is a crosscutting technology affecting the fuel consumption, engine performance and emissions. With the new approved fuel economy targets and the enhanced vehicle performance requirements, the ability to predict the impact on the fuel consumption of different VTMS modifications is becoming an important issue in the pre-prototype phase of vehicle development. This paper presents a methodology using different simulation tools to model the entire VTMS in order to understand and quantify its behavior. The detailed model contains: engine cooling system, lubrication system, powertrain system, HVAC system and intake and exhaust system. A detail model of the power absorbed by the accessory components operating in VTMS such as pumps and condenser is presented. The power of the accessory components is not constant but changing with respect to engine operation. This absorbed power is taken into account within the power produced by the engine shaft.
Technical Paper

Comparison of Rubber Bushing Models for Loads Analysis

2021-04-06
2021-01-0317
The rubber bushing is the key component to suppress vibration in the suspension system, an accurate constitutive model of rubber bushing should capture the amplitude and frequency dependency. Based on the lumped parameter model, three types of rubber bushing models are applied and compared, including the common Kelvin-Voigt model. To evaluate the model parameter and suitable frequency range, the quasi-static and dynamic tests have been performed. Comparing with the testing result, the fractional Kelvin-Voigt model combined with Berg’s friction has the minimum relative error of dynamic stiffness on the whole. Finally, two examples of chassis bushing under different loading conditions are presented. The rubber force and deflection are analyzed in both the time domain and the frequency domain, and the results show the difference of stiffness and hysteresis loop relative to frequency.
Technical Paper

Study on Vibration Reduction Technology for Transportation of TEG Dehydration Unit Regeneration Module

2021-04-06
2021-01-0334
In the petroleum and gas industry, cargo truck is one of the most important ways to transfer the skid-mounting from the manufacturer to the job location. Under the condition of bumpy road surface, the random vibration from the ground can easily cause the resonance of the internal equipment components of the skid-mounting, produce large deformation in the pipeline and equipment connection, and even the equipment will be damaged. In this paper, the finite element analysis model and dynamic rigid flexible coupling model of a TEG (Triethyleneglycol) dehydration unit regeneration skid-mounting are established by using the finite element analysis and multi-body dynamics software. The modal analysis of the skid and the vibration of the whole vehicle under different road excitation and driving conditions are carried out. Two solutions are proposed to improve the anti-vibration ability of the skid, and comparative analysis is made.
Technical Paper

Hanger Location Design and Vibration Isolation of an Exhaust System

2014-04-01
2014-01-1708
In the present study, the research of the exhaust system is performed in three steps. In the first step, the average driving degree of freedom displacement (ADDOFD) is calculated by the free modal analysis of the exhaust system. It is easy to find the reasonable location of the hanger according to the value of the ADDOFD, since it represents the relative size of some DOF's response displacement at excitation state. The second of which is to analyse the vibration isolation performance of the exhaust system based on the first step. The dynamic analysis of the exhaust system together with the powertrain is studied, by which way the unit sinusoidal excitation is applied at the powertrain's mass centre, so that the response force at the hanger can be obtained. Finally, the relationship between the constrained model of the exhaust system and the stiffness of the hanger is investigated, which is significant in engineering.
Technical Paper

Powertrain Motion Control Analysis under Quasi-Static Extreme Loads

2016-04-05
2016-01-0439
The powertrain mounting system (PMS) plays an important role in improving the NVH (Noise, Vibration, Harshness) quality of the vehicle. In all running conditions of a vehicle, the displacements of the powertrain C.G. should be controlled in a prescribed range to avoid interference with other components in the vehicle. The conventional model of PMS is based on vibration theory, considering the rotation angles are small, ignoring the sequence of the rotations. However, the motion of PMS is in 3D space with 3 translational degrees of freedom and 3 rotational degrees of freedom, when the rotation angles are not small, the conventional model of PMS will cause errors. The errors are likely to make powertrain interfering with other components. This paper proposes a rigid body mechanics model of the powertrain mounting system. When the powertrain undergoes a large rotational motion, the rigid body mechanics model can provide more accurate calculation results.
Technical Paper

Multi-domain Modeling and Simulation of Vehicle Thermal System Based on Modelica

2014-04-01
2014-01-1183
Vehicle Thermal Management System (VTMS) is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, driver/passenger comfort, emissions. This paper presents a novel methodology to investigate VTMS based on Modelica language. A detailed VTMS platform including engine cooling system, lubrication system, powertrain system, intake and exhaust system, HVAC system is built, which can predict the steady and transient operating conditions. Comparisons made between the measured and calculated results show good correlation and approve the forecast capability for VTMS. Through the platform a sensitivity analysis is presented for basic design variables and provides the foundation for the design and matching of VTMS. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to model and simulate VTMS.
Journal Article

A New Interval Inverse Analysis Method and Its Application in Vehicle Suspension Design

2016-04-05
2016-01-0277
Interval inverse problems can be defined as problems to estimate input through given output, where the input and output are interval numbers. Many problems in engineering can be formulated as inverse problems like vehicle suspension design. Interval metrics, instead of deterministic metrics, are used for the suspension design of a vehicle vibration model with five degrees of freedom. The vibration properties of a vehicle vibration model are described by reasonable intervals and the suspension interval parameters are to be solved. A new interval inverse analysis method, which is a combination of Chebyshev inclusion function and optimization algorithm such as multi-island genetic algorithm, is presented and used for the suspension design of a vehicle vibration model with six conflicting objective functions. The interval design of suspension using such an interval inverse analysis method is shown and validated, and some useful conclusions are reached.
X