Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

ERRATUM: Study of Reproducibility of Pedal Tracking and Detection Response Task to Assess Driver Distraction

2015-04-14
2015-01-1388.01
1. On page 111, the authors have described a method to assess driver distraction. In this method, participants maintained a white square size on a forward display by using a game gas pedal of like in car-following situation. The size of the white square is determined by calculating the distance to a virtual lead vehicle. The formulas to correct are used to explain variation of acceleration of the virtual lead vehicle. The authors inadvertently incorporated old formulas they had used previously. In the experiments discussed in the article, the corrected formulas were used. Therefore, there is no change in the results. The following from the article:
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession

2009-04-20
2009-01-1356
Diesel injection parameters effect on liquid-phase diesel spray penetration after the end-of-injection (EOI) is investigated in a constant-volume chamber over a range of ambient and injector conditions typical of a diesel engine. Our past work showed that the maximum liquid penetration length of a diesel spray may recede towards the injector after EOI at some conditions. Analysis employing a transient jet entrainment model showed that increased fuel-ambient mixing occurs during the fuel-injection-rate ramp-down as increased ambient-entrainment rates progress downstream (i.e. the entrainment wave), permitting complete fuel vaporization at distances closer to the injector than the quasi-steady liquid length. To clarify the liquid-length recession process, in this study we report Mie-scatter imaging results near EOI over a range of injection pressure, nozzle size, fuel type, and rate-of-injection shape. We then use a transient jet entrainment model for detailed analysis.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution

2009-04-20
2009-01-1513
A thorough understanding of vehicle exhaust aftertreatment system performance requires time-resolved emissions measurements that accurately follow driving transients, and that are correctly time-aligned with exhaust temperature and flow measurements. The transient response of conventional gas analyzers is characterized by both a time delay and an attenuation of high-frequency signal components. The distortion that this imposes on transient emissions measurements causes significant errors in instantaneous calculations of aftertreatment system efficiency, and thus in modal mass analysis. This creates difficulties in mathematical modeling of emissions system performance and in optimization of powertrain control strategies, leading to suboptimal aftertreatment system designs. A mathematical method is presented which improves the response time of emissions measurements. This begins with development of a model of gas transport and mixing within the sampling and measurement system.
Journal Article

Metering Characteristics of a Closed Center Load - Sensing Proportional Control Valve

2009-10-06
2009-01-2850
The investigation of the flow through the metering section of hydraulic components plays a fundamental role in the design and optimization processes. In this paper the flow through a closed center directional control valve for load -sensing application is studied by means of a multidimensional CFD approach. In the analysis, an open source fluid-dynamics code is used and both cavitation and turbulence are accounted for in the modeling. A cavitation model based on a barotropic equation of state and homogeneous equilibrium assumption, including gas absorption and dissolution in the liquid medium, is adopted and coupled to a two equation turbulence approach. Both direct and inverse flows through the metering section of the control valve are investigated, and the differences in terms of fluid - dynamics behavior are addressed In particular, the discharge coefficient, the recirculating regions, the flow acceleration angle and the pressure and velocity fields are investigated and compared.
Journal Article

Virtual Multi-Cylinder Engine Transient Test System

2009-09-13
2009-24-0106
Researchers at the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison have developed a transient test system for single-cylinder engines that accurately replicates the dynamics of a multi-cylinder engine. The overall system can perform very rapid transients in excess of 10,000 rpm/second, and also replicates the rotational dynamics, intake gas dynamics, and heat transfer dynamics of a multi-cylinder engine. Testing results using this system accurately represent what would be found in the multi-cylinder engine counterpart. Therefore, engine developments can be refined to a much greater degree at lower cost, and these changes directly incorporated in the multi-cylinder engine with minimal modification. More importantly, various standardized emission tests such as the cold-start, FTP or ETC, can be run on this single-cylinder engine.
Journal Article

Liquid Jet Deformation Induced by Cavitation in Nozzles of Various Shapes

2009-09-13
2009-24-0157
Cavitation in the nozzles of various shapes and liquid jets discharged from the nozzles are visualized using a high-speed camera to investigate the effects of cavitation on liquid jet deformation. Cylindrical nozzles and two-dimensional (2D) nozzles of various upstream diameters and length-to-diameter ratios (L/D) are used. For simultaneous high-speed visualizations of cavitation and a jet, a tilted acrylic plate is placed in front of the jets injected through the 2D nozzles, while three mirrors are used to capture both the front view of the jet injected through a cylindrical nozzle and the side view of cavitation. The visualizations confirm that the collapse of a cavitation cloud near the exit induces a ligament formation in 2D and cylindrical nozzles of various L/Ds. Although no vapor film is formed in short nozzles, cavitation clouds are shed near the exit and induce ligaments.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Deposit Control in Modern Diesel Fuel Injection Systems

2010-10-25
2010-01-2250
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
Journal Article

Analysis of Transient Cavitating Flows in Diesel Injectors Using Diesel and Biodiesel Fuels

2010-10-25
2010-01-2245
The aim of the paper is the comparison of the injection process with different fuels, i.e. a standard diesel fuel and a pure biodiesel. Multiphase cavitating flows inside diesel nozzles are analyzed by means of unsteady CFD simulations using a two-fluid approach with consideration of bubble dynamics, on moving grids from needle opening to closure. Two five-hole nozzles with cylindrical and conical holes are studied and their behaviors are discussed taking into account the different properties of the two fuels. Extent of cavitation regions is not much affected by the fuel type. Biodiesel leads to significantly higher mass flow only if the nozzle design induces significant cavitation which extends up to the outlet section and if the injector needle is at high lift. If the internal hole shaping is able to suppress cavitation, the stabilized mass flows are very similar with both fuels.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

Effect of Flash Gas Bypass on the Performance of R134a Mobile Air-Conditioning System with Microchannel Evaporator

2011-04-12
2011-01-0139
This paper demonstrates that the implementation of Flash Gas Bypass method can improve the performance of conventional direct expansion R134a mobile air-conditioning system with a microchannel evaporator. This method uses flash gas tank after expansion valve to separate and bypass flash refrigerant vapor around the evaporator, and feed the evaporator with only liquid refrigerant. Pressure drop is reduced and refrigerant distribution is significantly improved, resulting in higher evaporator effectiveness and evaporation pressure. Both lower pressure drop and lifted evaporation pressure allows the compressor to work with lower pressure ratio, saving required compressor work. An experimental comparison of the direct expansion system shows that Flash Gas Bypass method increases the cooling capacity and COP at the same time by up to 16% and 11%, respectively.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

2009-11-02
2009-01-2682
Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Journal Article

Analysis of In-Cylinder Hydrocarbons in a Multi-Cylinder Gasoline HCCI Engine Using Gas Chromatography

2009-11-02
2009-01-2698
Gasoline Homogeneous Charge Compression Ignition (HCCI) combustion has been studied widely in the past decade. However, in HCCI engines using negative valve overlap (NVO), there is still uncertainty as to whether the effect of pilot injection during NVO on the start of combustion is primarily due to heat release of the pilot fuel during NVO or whether it is due to pilot fuel reformation. This paper presents data taken on a 4-cylinder gasoline direct injection, spark ignition/HCCI engine with a dual cam system, capable of recompressing residual gas. Engine in-cylinder samples are extracted at various points during the engine cycle through a high-speed sampling system and directly analysed with a gas chromatograph and flame ionisation detector. Engine parameter sweeps are performed for different pilot injection timings and quantities at a medium load point.
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Journal Article

Investigations of Clustred Diesel Jets under Quiescent High-Pressure and High-Temperature Conditions using Mie, Schlieren and Chemiluminescence Imaging

2009-11-02
2009-01-2771
One of the fundamental topics in the design of new injection systems for Dl Diesel engines is to decrease the soot emissions. A promising approach to minimize soot production are injection nozzles having clustered holes. The basic idea of Cluster Configuration (CC) nozzles is to prevent a fuel rich area in the center of the flame where most of the soot is produced. For this purpose each hole of a conventional nozzle is replaced by two smaller holes, which are sized to yield the same flow rate. The basic strategy of the cluster nozzles is to provide a better primary break up, and therefore a better mixture formation, caused by the smaller nozzle holes, but a comparable penetration length of the vapor phase due to merging of the spray plumes.
Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
X