Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ankle Joint Injury Mechanism for Adults in Frontal Automotive Impact

1991-10-01
912902
Accident cases are examined to determine the injury mechanism for foot/ankle moderate and greater injuries in vehicle crashes. The authors examine 480 in-depth cases from the National Accident Sampling System for the years 1979 through 1987. An injury mechanism - a description of how the foot/ankle physically interacted with the interior of the vehicle - is assigned to each of the injured occupants. For the accidents in which the 480 occupants were injured, the more prominent types of vehicle collisions are characterized.
Technical Paper

Development of a Two-Dimensional Driver Side Airbag Deployment Algorithm

1990-10-01
902323
A PC based interactive program was developed to simulate the unfolding and deploying process of a driver side airbag in the sagittal plane. The airbag was represented by a series of nodes. The maximum allowable stretch was less or equal to one between any two nodes. We assumed that the airbag unfolding was pivoted about folded points. After the completion of the unfolding process the airbag would begin to deploy. During the deploying process, two parameters were used to determine the nodal priority of the inflation. The first parameter was the distance between the instantaneous and final positions of a node. Nodes with longer distances to travel will have to move faster. We also considered the distance between the current nodal position and the gas inlet location. For a node closer to the gas inlet, we assumed that the deploying speed was faster. A graphical procedure was used to calculate the area of the airbag.
Technical Paper

Development of an Improved Thoracic Injury Criterion

1998-11-02
983153
In an effort to better understand thoracic trauma in frontal impacts, seventy-one frontal impact sled tests were conducted using post-mortem human subjects in the driver's position. Various contemporary automotive restraint systems were used in these tests. The post-mortem subjects were instrumented with accelerometers and chest bands to characterize their mechanical response during the impact. The resulting injury from the impact was determined through radiography and detailed autopsy and its severity was coded according to the Abbreviated Injury Scale. The measured mechanical responses were analyzed using statistical procedures. In particular, linear logistic regression was used to develop models which associate the measured mechanical parameters to the observed thoracic injury response. Univariate and multivariate models were developed taking into consideration potential confounders and effect modifiers.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

Analytical Investigation of Driver Thoracic Response to Out of Position Airbag Deployment

1998-11-02
983165
A finite element model of the human thorax was merged with a rigid body finite element implementation of the Hybrid III dummy (after removal of the Hybrid III thorax) and the combined model is used in simulations of an out of position driver during airbag deployment. Parameters related to injury, such as A-P thorax deformation, Viscous Criterion, rib stress distribution and strain in the thoracic contents are used to quantify the thoracic injury response. Initial driver position is varied to examine the relationship between distance from the airbag module and thoracic injury risk. The potential for injury mitigation through modulation of airbag inflation after initiation is also investigated. The utility of the combined model as an effective tool for the analysis of occupant kinematics and dynamics, examination of injury mechanisms, and optimization of restraint system design parameters is demonstrated.
Technical Paper

Response and Tolerance of the Human Forearm to Impact Loading

1998-11-02
983149
With the widespread use of supplemental restraint systems (airbags), occasional rare injuries have occurred because of the force associated with these systems upon deployment. Recent case studies have demonstrated forearm fractures associated with airbag deployment. The present study was conducted to determine the tolerance of the human forearm under a dynamic bending mode. A total of 30 human cadaver forearm specimens were tested using three-point bending protocol to failure at 3.3 m/s and 7.6 m/s velocities. Results indicated significantly (p < 0.01) greater biomechanical parameters associated with males compared to females. The bending tolerance of the human forearm, however, was found to be most highly correlated to bone mineral density, bone area, and forearm mass. Thus, any occupant with lower bone mineral density and lower forearm geometry/mass is at higher risk. The mean failure bending moment for all specimens was 94 Nm.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

International Harmonized Research Activities (IHRA) status report of the Biomechanics Working Group

2001-06-04
2001-06-0133
A summary of the efforts of the Biomechanics Working Group to complete the task given to it by the International Harmonized Research Activities Steering Committee to determine specifications for a Universal Side Impact Anthropomorphic Test Devices is presented. Topics discussed are the nature of the world side impact problem, the anthropometric characterization of the world population at risk, dummy impact response specifications, and necessary and appropriate injury criteria and performance levels.
Technical Paper

Performance and Mechanical Properties of Various Padding Materials Used in Cadaveric Side Impact Sled Tests

1992-02-01
920354
Various types of padding have been used in side impact sled tests with cadavers. This paper presents a summary of performance of the padding used in NHTSA and WSU/CDC sled tests, and a summary of material properties of padding used in cadaveric sled tests. The purpose of this paper is to provide information on padding performance in cadavers, rather than optimum padding performance in dummies.
Technical Paper

SID Response Data in a Side Impact Sled Test Series

1992-02-01
920350
Heidelberg-type side impact sled tests were conducted using SID side impact dummies. These tests were run under similar conditions to a series of cadaveric sled tests funded by the Centers for Disease Control in the same lab. Tests included 6.7 and 9 m/s (15 and 20 mph) unpadded and 9 m/s padded tests. The following padding was used at the thorax: ARSAN, ARCEL, ARPAK, ARPRO, DYTHERM, 103 and 159 kPa (15 and 23 psi) crush strength paper honeycomb, and an expanded polystyrene. In all padded tests the dummy Thoracic Trauma Index, TTI(d) was below the value of 85 set by federal rulemaking (49 CFR, Part 571 et al., 1990). In contrast, cadavers in 9 m/s sled tests did not tolerate ARSAN 601 (MAIS 5) and 23 psi (159 kPa) paper honeycomb (MAIS 5), and 20 psi (138 kPa) Verticel™ honeycomb (MAIS 4), but tolerated 15 psi (103 kPa) paper honeycomb (average thoracic MAIS 2.3 in six tests).
Technical Paper

Biomechanical Response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts

1990-10-01
902307
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This series of runs provided a good test of how injury criteria perform under a variety of impact surface conditions. In this study thoracic injury criteria based on force, acceleration, compression, and velocity x compression (VC) were evaluated. Maximum compression and VCmax proved to be the best injury indicators in this series. Biomechanical response and injury tolerance are also presented.
Technical Paper

Simulated Automotive Side Impact on the Isolated Human Pelvis: Phase I: Development of a Containment Device Phase II: Analysis of Pubic Symphysis Motion and Overall Pelvic Compression

1997-11-12
973321
PHASE I - A containment fixture was designed and manufactured to stabilize and preload isolated human pelves within a DYNATUP™ Drop Tower during simulated automotive side impact. The fixture was utilized during thirteen parametric tests aimed at determining boundary conditions which simulate inertial properties of whole cadavers during impacts of the isolated human pelvis. The resulting pelvic injuries (i.e., fractures) ranged from no fracture to complex acetabular fracture. These injuries were sustained with drop masses of 14.2-25.2 kg and impact velocities of 4.1-6.4 m/s. Peak force, measured during impact, ranged from 2.0-8.2 kN. PHASE II - Phrase II studies used nine additional human pelves to explored pelvis stiffness and pubis symphysis mobility under lateral impact to the greater trochanter. The containment device designed and tested in Phase I was utilized to stabilize and compressively preload the specimens during impact.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Finite Element Modeling of Direct Head Impact

1993-11-01
933114
A 3-D finite element human head model has been developed to study the dynamic response of the human head to direct impact by a rigid impactor. The model simulated closely the main anatomical features of an average adult head. It included the scalp, a three-layered skull, cerebral spinal fluid (CSF), dura mater, falx cerebri, and brain. The layered skull, cerebral spinal fluid, and brain were modeled as brick elements with one-point integration. The scalp, dura mater, and falx cerebri were treated as membrane elements. To simulate the strain rate dependent characteristics of the soft tissues, the brain and the scalp were considered as viscoelastic materials. The other tissues of the head were assumed to be elastic. The model contains 6080 nodes, 5456 brick elements, and 1895 shell elements. To validate the head model, it was impacted frontally by a cylinder to simulate the cadaveric tests performed by Nahum et. al. (8).
Technical Paper

Thoracic Trauma Assessment Formulations for Restrained Drivers in Simulated Frontal Impacts

1994-11-01
942206
Sixty-three simulated frontal impacts using cadaveric specimens were performed to examine and quantify the performance of various contemporary automotive restraint systems. Test specimens were instrumented with accelerometers and chest bands to characterize their mechanical responses during the impact. The resulting thoracic injury severity was determined using detailed autopsy and was classified using the Abbreviated Injury Scale. The ability of various mechanical parameters and combinations of parameters to assess the observed injury severities was examined and resulted in the observation that belt restraint systems generally had higher injury rates than air bag restraint systems for the same level of mechanical responses. To provide better injury evaluations from observed mechanical parameters without prior knowledge of what restraint system was being used, a dichotomous process was developed.
Technical Paper

An Evaluation of TTI and ASA in SID Side Impact Sled Tests

1994-11-01
942225
Thirty-seven SID side impact sled tests were performed using a rigid wall and a padded wall with fourteen different padding configurations. The Thoracic Trauma Index (TTI) and Average Spine Acceleration (ASA) were measured in each test. TTI and ASA were evaluated in terms of their ability to predict injury in identical cadaver tests and in terms of their ability to predict the harm or benefit of padding of different crush strengths. SID ASA predicted the injury seen in WSU-CDC cadaver tests better than SID TTI. SID ASA predicted that padding of greater than 20 psi crush strength is harmful (ASA > 40 g's). SID TTI predicted that padding of greater than 20 psi crush strength is beneficial (TTI < 85 g's). SID TTI predicts the benefit of lower impact velocity. However, SID ASA appears more useful in assessing the harm or benefit of door padding or air bags.
Technical Paper

A Three-Dimensional Finite Element Analysis of the Human Brain Under Combined Rotational and Translational Accelerations

1994-11-01
942215
Finite element modelling has been used to study the evolution of strain in a model of the human brain under impulsive acceleration loadings. A cumulative damage measure, based on the calculation of the volume fraction of the brain that has experienced a specific level of stretch, is used as a possible predictor for deformation-related brain injury. The measure is based on the maximum principal strain calculated from an objective strain tensor that is obtained by integration of the rate of deformation gradient with appropriate accounting for large rotations. This measure is used here to evaluate the relative effects of rotational and translational accelerations, in both the sagittal and coronal planes, on the development of strain damage in the brain. A new technique for the computational treatment of the brain-dura interface is suggested and used to alleviate the difficulties in the explicit representation of the cerebrospinal fluid layer existing between the two solid materials.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain

1995-11-01
952714
A new three-dimensional human head finite element model, consisting of the scalp, skull, dura, falx, tentorium, pia, CSF, venous sinuses, ventricles, cerebrum (gray and white matter), cerebellum, brain stem and parasagittal bridging veins has been developed and partially validated against experimental data of Nahum et al (1977). A frontal impact and a sagittal plane rotational impact were simulated and impact responses from a homogeneous brain were compared with those of an inhomogeneous brain. Previous two-dimensional simulation results showed that differentiation between the gray and white matter and the inclusion of the ventricles are necessary in brain modeling to match regions of high shear stress to locations of diffuse axonal injury (DAI). The three-dimensional simulation results presented here also showed the necessity of including these anatomical features in brain modeling.
X