Refine Your Search

Topic

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

A Comprehensive Study of Diesel Combustion and Emissions with Post-injection

2007-04-16
2007-01-0915
A comprehensive study is carried out in order to better understand combustion behavior in a direct injection Diesel engine working under multiple injection strategies, in particular when using post-injections. The aim of the study is to provide criteria to more easily define optimized injection strategies. During the study two main phenomena have been observed and characterized: an acceleration of the final stage of combustion and an apparent disconnection between the combustions of the two pulses (“split flame”). Thanks to the combustion acceleration phenomenon, if the post-injection is placed near enough the main injection, the end of combustion can take place even earlier compared to the case with a single main injection. In such conditions NOx emissions increase (most likely due to a higher temperature level during the last stage of combustion), but soot and specific fuel consumption decrease (due to a faster last phase of combustion).
Technical Paper

Diesel NOx Modeling with a Reduction Mechanism for the Initial NOx Coming from EGR or Re-entrained Burned Gases

2008-04-14
2008-01-1188
Traditionally the NOx prediction models use to take into account exclusively the NOx formation process. Nowadays diesel engines use to operate with high EGR rates and high fuel/air equivalence ratios, in opposition with what it was standard in the past years. In such conditions a considerable amount of NOx generated in the previous cycle (coming from the recirculated exhaust gases) or in the previous combustion is re-entrained by the flame, where a highly reducing region exists (due to a lack of oxygen and the presence of hydrocarbons and a high temperature level). Face to this fact a question arises: what happens with these re-entrained NOx?
Technical Paper

Sensitivity Study of a NOx Estimation Model for On-Board Applications

2008-04-14
2008-01-0640
The increasingly stringent antipollution legislation and the necessity of a continuous control of the pollutant emissions lead to the development, among others, of NOx estimation models to be included in the engine control system and the on-board diagnostic system. Two elements are important for a good estimation of these pollutant emissions: the knowledge of the combustion process, which is available via the instantaneous pressure signal, and the flame temperature, which is estimated from the in-cylinder conditions (mainly from the air temperature and oxygen concentration). All these parameters could be nowadays available and even analyzed on the vehicle during normal engine operation. In this paper we intend to assess the NOx estimation sensitivity to inaccuracies in the input parameters to identify the critical parameters in this estimation. The NOx emissions model which has been developed and used for this purpose in the frame of this research is based on the Zeldovich mechanism.
Technical Paper

Analysis of the Potential of Biodiesel as an Alternative Fuel for Current and Future HSDI Engines

2009-04-20
2009-01-0480
In this paper the effect of the engine load and the EGR (exhaust gas recirculation) rate on the combustion process and the pollutant emissions when using RME (rapeseed methyl-ester) is investigated. For this purpose a parametric study in a single-cylinder HSDI (high speed direct injection) engine in a wide range of operating conditions (thus trying to maximize the generality of the results) has been carried out. All the output parameters are compared with the corresponding ones for a reference diesel fuel at equivalent engine performances and operating conditions. To perform a rigorous comparison, a specific methodology has been designed based on the comparison at equivalent engine load and oxygen mass fraction in the intake manifold, so as to remove the effect of the fuel properties (derived from the different oxygen content, mainly) on the engine performances.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts

2017-09-04
2017-24-0101
Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Technical Paper

Characterization of In-Cylinder Soot Oxidation Using Two-Color Pyrometry in a Production Light-Duty Diesel Engine

2016-04-05
2016-01-0735
Engine-out soot emissions are the result of a complex balance between in-cylinder soot formation and oxidation. Soot is formed in the diffusion flame, just after the lift-off length (LOL). Size and mass of soot particles increase through the diffusion flame and finally they are partially oxidized at the flame front. Therefore, engine-out soot emissions depend on the amount of soot formed and oxidized inside the combustion chamber. There is a considerable amount of work in the literature on characterization of soot formation. However, there is a clear lack of published research related to the characterization of soot oxidation. Thus, the main objective of the current research is to provide more knowledge and insight into the soot oxidation processes. For this purpose, a combination of theoretical and experimental tools were used. In particular, in-cylinder optical thickness (KL) was quantified with an optoelectronic sensor that uses two-color pyrometry.
Technical Paper

Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications

2017-03-28
2017-01-0846
In the present work a constant-pressure flow facility able to reach 15 MPa ambient pressure and 1000 K ambient temperature has been employed to carry out experimental studies of the combustion process at Diesel engine like conditions. The objective is to study the effect of orifice diameter on combustion parameters as lift-off length, ignition delay and flame penetration, assessing if the processing methodologies used for a reference nozzle are suitable in heavy duty applications. Accordingly, three orifice diameter were studied: a spray B nozzle, with a nominal diameter of 90 μm, and two heavy duty application nozzles (diameter of 194 μm and 228 μm respectively). Results showed that nozzle size has a substantial impact on the ignition event, affecting the premixed phase of the combustion and the ignition location. On the lift-off length, increasing the nozzle size affected the combustion morphology, thus the processing methodology had to be modified from the ECN standard methodology.
Technical Paper

A 5-Zone Model to Improve the Diagnosis Capabilities of a Rapid Compression-Expansion Machine (RCEM) in Autoignition Studies

2017-03-28
2017-01-0730
In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
Technical Paper

Hydraulic Behavior and Spray Characteristics of a Common Rail Diesel Injection System Using Gasoline Fuel

2012-04-16
2012-01-0458
Regulations on emissions from diesel engines are becoming more stringent worldwide. Hence there is a great deal of interest in developing engine combustion systems that offer the fuel efficiency of a diesel engine, but with low smoke and NOx emissions. Thus, premixed compression ignition combustion is an interesting way to achieve a clean and efficient engine. However, using a high reactivity fuel such as diesel fuel leads to a complex and expensive engine design. A proven way to overcome this drawback is to actively control the reactivity of the fuel using low cetane fuels such as gasoline. This strategy has been explored with single and multiple cylinder engines. However no detailed and well conducted studies of the injection process were found related to the effects of gasoline use in a standard commercial compression ignition diesel engine injection system.
Technical Paper

A Soot Radiation Model for Diesel Sprays

2012-04-16
2012-01-1069
Soot radiation has an important contribution to the overall heat losses in a combustion chamber of a DI diesel engine. The aim of this study was to develop a soot radiation model coupled to a soot formation/oxidation sub-model, which is also described in the paper. On the one hand, the soot radiation model is based on the available knowledge of the radiation of a soot cloud commonly used to apply the two-color method to diesel sprays. On the other hand, it was tuned and validated with experimental data: the optical thickness, KL, obtained from the laser extinction method, and the radiation intensity at two different wavelengths. Once the model was validated, the overall radiated power was calculated taking into account the radiation absorption caused by the spray itself. This power was compared to the one released by the spray combustion process, and the results were in agreement with other studies available in the literature.
Technical Paper

An Experimental Approach in the Impact of Electric Fields on Liquid Fuel Spray Injection

2013-04-08
2013-01-1607
This publication is the result of a multidisciplinary collaboration between the academia and the industry. An attempt to pre-ionize and influence the trajectory and the fluid mechanics of the injected fuel into an experimental injection system by means of electromagnetic fields was made. This collaboration project started from research proposal, which aims at exploring the effects of a highly ionized environment on the fuel injection event and how the momentum of the injected fuel droplets may be affected by the electromagnetic fields in form of quantified variables, such as spray penetration, spreading angle and the spray axis angle. An influence of the applied electromagnetic field on the fuel spray depending on the electrode configuration was observed and is presented and discussed in this publication.
Technical Paper

Transient Rate of Injection Effects on Spray Development

2013-09-08
2013-24-0001
Transients in the rate of injection (ROI) with respect to time are ever-present in direct-injection engines, even with common-rail fueling. The shape of the injection ramp-up and ramp-down affects spray penetration and mixing, particularly with multiple-injection schedules currently in practice. Ultimately, the accuracy of CFD model predictions used to optimize the combustion process depends upon the accuracy of the ROI utilized as fuel input boundary conditions. But experimental difficulties in the measurement of ROI, as well as real-world affects that change the ROI from the bench to the engine, add uncertainty that may be mistaken for weaknesses in spray modeling instead of errors in boundary conditions. In this work we use detailed, time-resolved measurements of penetration at the Spray A conditions of the Engine Combustion Network to rigorously guide the necessary ROI shape required to match penetration in jet models that allow variable rate of injection.
Technical Paper

Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines

2006-04-03
2006-01-1382
The aim of this work is to develop a combustion and emissions (NOx and soot) predictive tool that allows rapid parametric explorations of operating conditions and geometric configurations in diesel engines. This paper will present the mixing and combustion models used. All the models are constructed around a spray-mixing model. This mixing model is based on the gaseous steady jets theory. The transient behavior description of the initial and final phases of the injection-combustion process is obtained from CFD studies. The mixing model allows the determination of the instantaneous local conditions of temperature and species mass fraction, used by the ignition, premixed and diffusion combustion models. The ignition and premixed combustion models are based on a simplification and parameterization of a complete n-heptane chemical kinetics description. Some constants of the models are adjusted by a genetic algorithm with experimental information from different engines.
Technical Paper

Jet-Wall Interaction Effects on Diesel Combustion and Soot Formation

2005-04-11
2005-01-0921
The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and “confined” wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation.
Technical Paper

Numerical Analysis of the Injection Angle of Urea-Water Sprays for the Ammonia Generation in Realistic Test Conditions

2022-03-29
2022-01-0584
During the past decades, the Nitrogen Oxides (NOx) emission limitations have become stricter, promoting the development of after-treatment systems like Selective Catalytic Reduction (SCR) for emission reduction purposes. The Urea-Water Solution (UWS) spray characteristics can directly have an effect on the SCR efficiency. To understand the droplet breakup and mixing of the UWS with the surrounding air under different operating conditions, a computational campaign has been set up. The main objective of the present study is to recreate the spray injection process, as well as the chemical processes that the UWS spray undergoes, and to analyze the optimal injection angle to maximize the amount of ammonia generated during the injection process by means of Computational Fluid Dynamics (CFD). A Eulerian-Lagrangian framework has been employed to track the evolution of the injected droplets within a Reynolds-Averaged Navier-Stokes (RANS) turbulence formulation.
Technical Paper

Effects of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process

2013-04-08
2013-01-1602
A fundamental study to experimentally analyze the effect of cavitation in common-rail diesel nozzles on the soot formation process was carried out. The soot content was characterized by measuring the soot radiation, and an original methodology was developed to suitably characterize the soot formation process from this soot content. After a significant effort to overcome the different difficulties when analyzing the experimental data, the results seem to show a promising conclusion: cavitation reduces the soot formation rate. This reduction is explained, on the one hand, because it leads to a reduction in the effective diameter, thus diminishing the equivalence fuel/air ratio at the lift-off length; and, on the other hand, because it provokes an increase in effective velocity, thus increasing the lift-off length and reducing the corresponding equivalence fuel/air ratio.
X