Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Classification of Contact Forces in Human-Robot Collaborative Manufacturing Environments

2018-04-02
Abstract This paper presents a machine learning application of the force/torque sensor in a human-robot collaborative manufacturing scenario. The purpose is to simplify the programming for physical interactions between the human operators and industrial robots in a hybrid manufacturing cell which combines several robotic applications, such as parts manipulation, assembly, sealing and painting, etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in a robotic application for discriminating five different contact states w.r.t. the force/torque data. A systematic approach to train machine-learning based classifiers is presented, thus opens a door for enabling LightGBM with robotic data process. The total task time is reduced largely because force transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot demonstrate the feasibility of the proposed method.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

Development of Decentralized Integrated Chassis Control for Vehicle Stability in Limit Handling

2016-09-27
2016-01-8106
As we move towards the world of autonomous vehicles it becomes increasingly important to integrate several chassis control systems to provide the desired vehicle stability without mutual interference. The principles for integration proposed in existing technical literature are majorly centralized which are not only computationally expensive but does not fit the current supplier based OEM business model. An Automotive OEM brings multiple suppliers on-board for developing the Active Safety systems considering several factors such as cost, quality, time, ease of business etc. When these systems are put together in the vehicle they may interfere with each other’s function. Decoupling their function results in a need of heavy calibration causing performance trade-offs and loss in development time.
Journal Article

Rear Underrun Protection Test (ECE R58) using CAE Simulation

2016-09-27
2016-01-8098
The regulatory requirement in Economic Commission for Europe (ECE R58) regulation applies to the Rear underrun protection devices which are intended to be fitted to commercial vehicles of N categories. The purpose of this regulation is to offer effective protection against underrunning of vehicles. This paper describes Computer aided engineering (CAE) methodology for testing rear underrun protection devices with loading sequences to be decided by Original equipment manufacturer. A sample model is prepared and analyzed to represent actual test conditions. Constraints and boundary conditions are applied as per test of vehicle. Finite element simulation is carried out using LS DYNA solver. Structural strength and integrity of Rear under protection device assembly is observed for different regulatory load requirement.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

The Study of Steering on Ramp Based on Electric Tracked Vehicle

2020-02-24
2020-01-5015
The research on the characteristics of vehicle movement is the premise to guarantee the smooth operation of electric vehicles, and it’s also the basis for developing the vehicle ability in depth. Therefore, it’s essential to study on the vehicle movement characteristics. And steering on ramp is a typical working condition for tracked vehicle. Firstly, the kinematics and dynamics of tracked vehicle during the steering process on ramp are analyzed in detail aiming at the problem that it’s complex and difficult to describe the process of steering, and the dynamics model of tracked vehicle is established in the condition of the offset of instantaneous steering center and the sliding of the track and other factors. Second, the relationships between driving force, steering radius and slop are obtained by simulation, and the variation rules of these parameters are analyzed. Finally, the model of steering on ramp is verified using electric tracked vehicle.
Technical Paper

A Robust Cargo Box Structure Development Using DFSS Methodology

2020-04-14
2020-01-0601
A cargo box is a key structure in a pickup truck which is used to hold various items. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a Design for Six Sigma (DFSS) approach to improve the durability of cargo box panel in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, DFSS tools were proposed to find a robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. The optimum design selected was the one with the minimum stress level and the least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. DFSS identified load paths which helped teams finally come up with integrated shear plate to resolve the durability concern.
Standard

Tire Size Differential - Articulated Wheel Loader

2019-11-20
CURRENT
J2204_201911
This SAE Standard applies to the usage of tires of the same nominal size and tread type, but with different outside diameter for articulated front-end loaders. Articulated four-wheel-drive front-end loader performance and component life can be affected by excessive differences in the tire outside circumference and/or diameter. The purpose is to provide specific guidelines for the usage of tires with different outside circumference and/or diameter on articulated front-end loaders.
Standard

TIRE SIZE DIFFERENTIAL—ARTICULATED WHEEL LOADER

1994-05-01
HISTORICAL
J2204_199405
This SAE Standard applies to the usage of tires of the same nominal size and tread type, but with different outside diameter for articulated front-end loaders. Articulated four-wheel-drive front-end loader performance and component life can be affected by excessive differences in the tire outside circumference and/or diameter. The purpose is to provide specific guidelines for the usage of tires with different outside circumference and/or diameter on articulated front-end loaders.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
Journal Article

High-Temperature Life Assessment of Exhaust Components and the Procedure for Accelerated Durability and Reliability Testing

2012-09-24
2012-01-2058
Fatigue, creep, oxidation, or their combinations have long been recognized as the principal failure mechanisms in many high-temperature applications such as exhaust manifolds and thermal regeneration units used in commercial vehicle aftertreatment systems. Depending on the specific materials, loading, and temperature levels, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep-fatigue, fatigue-oxidation, creep-fatigue-oxidation. Several multiple failure mechanisms based material damage models have been developed, and products to resist these failure mechanisms have been designed and produced. However, one of the key challenges posed to design engineers is to find a way to accelerate the durability and reliability tests of auto exhaust in component and system levels and to validate the product design within development cycle to satisfy customer and market's requirements.
Journal Article

Evaluating How Functional Performance in Aerospace Components Is Affected by Geometric Variation

2018-06-05
Abstract Geometric variation stemming from manufacturing can be a limiting factor for the quality and reliability of products. Therefore, manufacturing assessments are increasingly being performed during the early stages of product development. In the aerospace industry, products are complex engineering systems, the development of which require multidisciplinary expertise. In such contexts, there are significant barriers against assessing the effects of geometric variation on the functionality of products. To overcome these barriers, this article introduces a new methodology consisting of a modelling approach linked to a multidisciplinary simulation environment. The modelling approach is based on the parametric point method, which allows point-scanned data to be transferred to parameterised CAD models. In a case study, the methodology is implemented in an industrial setting.
Technical Paper

Real-Time Processing Applications for Heavy-Duty Trucks

1986-10-20
861066
Real-time control systems have continued to advance along with other electronic devices and are now being utilized in the heavy-duty truck industry. These systems are designed to electronically control events as they happen and provide up-to-date diagnostic information, thus increasing the operating efficiency, reliability and safety of the vehicle. Real-time control systems have a potential for many different applications beyond those which are currently being employed in the trucking industry.
Technical Paper

Changing Properties of Brake Pads and Discs during Brake Testing

2020-10-05
2020-01-1628
Earlier publications show that brake pad physical properties such as hardness, modulus and natural frequencies continue to increase at room temperature over a period of 12 months and that the changes are faster during the first 3 - 6 months. The current investigation was undertaken to see how the properties might change during testing for the pads as well as for the discs. Low-copper and copper-free formulations were tested on pickup truck and passenger car brakes. In all cases, the dynamic modulus and natural frequencies are found to decrease (not increase) after the SAE J2522 performance testing, indicating that the stiffness of the pad and that of the disc decrease faster than the mass loss due to wear. Also, the inboard pad and the outboard pad change at two different rates.
Technical Paper

Freightliner “Business Class” Truck Program

1991-11-01
912660
Producing a commercial vehicle in a single location to satisfy the needs of multiple applications in a world market, cannot be realistically accomplished. Instead, Mercedes-Benz and its subsidiary, Freightliner Corporation, have adopted a strategy, characterized as multi-domestic rather than multinational, which relies on production of trucks in many locations. In this way, qualities can be offered which are in unique demand in those markets while minimizing the development effort and capitalizing on worldwide component sourcing. Presently Mercedes-Benz, including Freightliner, operates 54 truck manufacturing and assembly plants throughout the world. As a part of, and following this strategy, Freightliner has recently launched an all new medium-duty truck program for the U.S. market, produced in an all new manufacturing plant in Cleveland, North Carolina. The present paper describes this program and its development. Refer to Fig. 1.
Technical Paper

The Electronics Jigsaw Puzzle in the Trucking Industry

1991-11-01
912682
High tech is permeating the trucking industry, which is now entering the electronics and information age. The trucks of today are becoming increasingly sophisticated with technical innovations occurring in many areas. Electronic engines, electronic service tools, onboard computers, real time communication utilities and computerized operations represent a few key technical solutions that are finding increasing penetration in the market. These technical solutions complement and/or compete with one another as they strive to meet the needs of the trucking fleets. The extent to which they complement and/or compete with one another is not readily or widely understood. It will take skill and knowledge on the part of the customer and the supplier to know the difference. A quick glance at these solutions makes one simple fact clear: electronics is the technology that is common to all these solutions and is capable of weaving them together.
X