Refine Your Search

Topic

Author

Search Results

Technical Paper

A Military Space Plane Candidate

1997-10-01
975630
This paper presents a Military Space Plane design concept. While the current military space plane activity is focused on rocket-powered concepts, the concept presented here is powered by a rocket-based combined cycle engine that uses both rocket and air-breathing engine cycles. The design concept is the reference SSTO design concept used in the NASA HRST ANSER study. The reference concept is a derivative of the NASA air-breathing Access to Space study SSTO design concept. The Access to Space air-breathing vehicle's combined cycle engine was replaced by the Aerojet rocket-based combined cycle engine. The orbital performance capability of the reference design concept is presented for 100 n mi., polar, and 225 n mi., 51 deg. orbits. The sensitivity of GTOW to payload and margin is also presented.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

1990-09-01
901919
The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

1991-09-01
912177
Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Technical Paper

Future Military APU Requirements

1991-09-01
912176
Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

2011-10-18
2011-01-2792
The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Technical Paper

A Fast Running Loading Methodology for Ground Vehicle Underbody Blast Events

2018-04-03
2018-01-0620
A full-system, end-to-end blast modeling and simulation of vehicle underbody buried blast events typically includes detailed modeling of soil, high explosive (HE) charge and air. The complex computations involved in these simulations take days to just capture the initial 50-millisecond blast-off phase, and in some cases, even weeks. The single most intricate step in the buried blast event simulation is in the modeling of the explosive loading on the underbody structure from the blast products; it is also one of the most computationally expensive steps of the simulation. Therefore, there is significant interest in the modeling and simulation community to develop various methodologies for fast running tools to run full simulation events in quicker turnarounds of time.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

2005-10-03
2005-01-3426
Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Technical Paper

System Concept Effectiveness

1966-02-01
660728
Frequently, a choice between system concepts must be made on the basis of something other than a detailed evaluation of the design effectiveness of these systems. This paper develops a rudimentary analysis process for use in addressing this problem.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Journal Article

Building Multiple Resolution Modeling Systems Using the High-Level Architecture

2019-09-16
2019-01-1917
The modeling and simulation pyramid in defense states it clearly: Multi-Level modeling and simulation are required. Models and simulations are often classified by the US Department of Defense into four levels—campaign, mission, engagement, and engineering. Campaign simulation models are applied for evaluation; mission-level simulations to experiment with the integration of several macro agents; engagement simulations in engineered systems development; and engineering-level simulation models with a solid foundation in structural physics and components. Models operating at one level must be able to interact with models at another level. Therefore, the cure (“silver bullet”) is very clear: a comprehensive framework for Multiple Resolution Modeling (MRM) is needed. In this paper, we discuss our research about how to construct MRM environments.
Technical Paper

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles

2018-10-30
2018-01-1964
The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks.
Research Report

Internal Boundaries of Metal Additive Manufacturing: Future Process Selection

2022-03-11
EPR2022006
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred.
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Technical Paper

Design and Development of Fuel Tank for High Mobility Military Vehicle

2023-05-25
2023-28-1342
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material.
Journal Article

Balancing Lifecycle Sustainment Cost with Value of Information during Design Phase

2020-04-14
2020-01-0176
The complete lifecycle of complex systems, such as ground vehicles, consists of multiple phases including design, manufacturing, operation and sustainment (O&S) and finally disposal. For many systems, the majority of the lifecycle costs are incurred during the operation and sustainment phase, specifically in the form of uncertain maintenance costs. Testing and analysis during the design phase, including reliability and supportability analysis, can have a major influence on costs during the O&S phase. However, the cost of the analysis itself must be reconciled with the expected benefits of the reduction in uncertainty. In this paper, we quantify the value of performing the tests and analyses in the design phase by treating it as imperfect information obtained to better estimate uncertain maintenance costs.
Research Report

Unsettled Issues Concerning Integrated Vehicle Health Management Systems and Maintenance Credits

2020-05-27
EPR2020006
The “holy grail” for prognostics and health management (PHM) professionals in the aviation sector is to have integrated vehicle health management (IVHM) systems incorporated into standard aircraft maintenance policies. Such a change from current aerospace industry practices would lend credibility to this field by validating its claims of reducing repair and maintenance costs and, hence, the overall cost of ownership of the asset. Ultimately, more widespread use of advanced PHM techniques will have a positive impact on safety and, for some cases, might even allow aircraft designers to reduce the weight of components because the uncertainty associated with estimating their predicted useful life can be reduced. We will discuss how standard maintenance procedures are developed, who the various stakeholders are, and – based on this understanding - outline how new PHM systems can gain the required approval to be included in these standard practices.
Research Report

Impact of Quantum Computing in Aerospace

2022-06-14
EPR2022014
As the complexity of systems expands with increasing emphasis for digital transformation, the aerospace industry is generating big data to meet customer requirements. The ability to that data to solve challenging problems is limited by many factors, including the capabilities of current classical computing systems. Impact of Quantum Computing in Aerospace discusses how quantum computing systems offer (possibly quadratic to exponentially) greater computational power over classical computers. The power of quantum computing is tremendous and has many potential impacts on the aerospace industry; however, there are also many unsettled topics surrounding the future of the technology. Click here to access the full SAE EDGETM Research Report portfolio.
Research Report

Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing

2023-05-15
EPR2023011
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
X