Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Technical Paper

Optimization of Piston Bowl Geometry for a Low Emission Heavy-Duty Diesel Engine

2020-09-15
2020-01-2056
A computational fluid dynamics (CFD) guided design optimization was conducted for the piston bowl geometry for a heavy-duty diesel engine. The optimization goal was to minimize engine-out NOx emissions without sacrificing engine peak power and thermal efficiency. The CFD model was validated with experiments and the combustion system optimization was conducted under three selected operating conditions representing low speed, maximum torque, and rated power. A hundred piston bowl shapes were generated, of which 32 shapes with 3 spray angles for each shape were numerically analyzed and one optimized design of piston bowl geometry with spray angle was selected. On average, the optimized combustion system decreased nitrogen oxide (NOx) emissions by 17% and soot emissions by 41% without compromising maximum engine power and fuel economy.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Journal Article

Research on Unregulated Emissions from an Alcohols-Gasoline Blend Vehicle Using FTIR, HPLC and GC-MS Measuring Methods

2013-04-08
2013-01-1345
Unregulated emissions have become an important factor restricting the development of methanol and ethanol alternative alcohols fuels. Using two light-duty vehicles fuelled with pure gasoline, gasoline blend of 10% and 20% volume fraction of ethanol fuels, gasoline blend of 15% and 30% volume fraction of methanol fuels, New European Driving Cycle (NEDC) emission tests were carried on a chassis dynamometer according to ECE R83-05. High performance liquid chromatography (HPLC), Gas chromatography - Mass spectrometry (GC-MS), Fourier transform infrared spectrometer (FTIR) were used to measure methanol, formaldehyde, acetaldehyde, acetone, benzene, toluene, xylene, ethylene, propylene, 1,3-butadiene and isobutene emissions in the exhaust during the NEDC.
Journal Article

Development of Surrogate Model for Oxygenated Wide-Distillation Fuel with Polyoxymethylene Dimethyl Ether

2017-10-08
2017-01-2336
Polyoxymethylene Dimethyl Ether (PODEn) is a promising green additive to diesel fuel, owing to the unique chemical structure (CH3O[CH2O]nCH3, n≥2) and high cetane number. Together with the general wide-distillation fuel (WDF), which has an attractive potential to reduce the cost of production of vehicle fuel, the oxygenated WDF with PODEn can help achieve a high efficiency and low emissions of soot, NOx, HC, and CO simultaneously. In this paper, the first detailed reaction mechanism (225 species, 1082 reactions) which can describe the ignition characteristics of PODE1 and PODE3 at low temperature was developed.
Journal Article

Comparative Study on Gasoline HCCI and DICI Combustion in High Load Range with High Compression Ratio for Passenger Cars Application

2017-10-08
2017-01-2257
This study compared the combustion and emission characteristics of Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Compression Ignition (DICI) modes in a boosted and high compression ratio (17) engine fueled with gasoline and gasoline/diesel blend (80% gasoline by volume, denoted as G80). The injection strategy was adjusted to achieve the highest thermal efficiency at different intake pressures. The results showed that Low Temperature Heat Release (LTHR) was not observed in gasoline HCCI. However, 20% additional diesel could lower down the octane number and improve the autoignition reactivity of G80, which contributed to a weak LTHR, accounting for approximately 5% of total released heat. The combustion efficiency in gasoline DICI was higher than those in gasoline HCCI and G80 HCCI, while the exhaust loss and heat transfer loss in DICI mode were higher than those in HCCI mode.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Journal Article

Performance, Combustion and Emission Characteristics of Polyoxymethylene Dimethyl Ethers (PODE3-4)/ Wide Distillation Fuel (WDF) Blends in Premixed Low Temperature Combustion (LTC)

2015-04-14
2015-01-0810
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from Initial Boiling Point (IBP) of gasoline to Final Boiling Point (FBP) of diesel. Polyoxymethylene Dimethyl Ethers (PODEn) have high oxygen content and cetane number, are promising green additive to diesel fuel. In this paper, WDF was prepared by blending diesel and gasoline at ratio of 1:1, by volume; the mass distribution of oligomers in the PODE3-4 product was 88.9% of PODE3 and 8.46% of PODE4. Diesel fuel (Diesel), WDF (G50D50) and WDF (80%)-PODE3-4 (20%) (G40D40P20) were tested in a light-duty single-cylinder diesel engine, combustion characteristic, fuel consumption and exhaust emissions were measured. The results showed that: at idling condition, G40D40P20 has better combustion stability, higher heat release rate, higher thermal efficiency compared with G50D50.
Journal Article

High Speed Imaging Study on the Spray Characteristics of Dieseline at Elevated Temperatures and Back Pressures

2014-04-01
2014-01-1415
Dieseline combustion as a concept combines the advantages of gasoline and diesel by offline or online blending the two fuels. Dieseline has become an attractive new compression ignition combustion concept in recent years and furthermore an approach to a full-boiling-range fuel. High speed imaging with near-parallel backlit light was used to investigate the spray characteristics of dieseline and pure fuels with a common rail diesel injection system in a constant volume vessel. The results were acquired at different blend ratios, and at different temperatures and back pressures at an injection pressure of 100MPa. The penetrations and the evaporation states were compared with those of gasoline and diesel. The spray profile was analyzed in both area and shape with statistical methods. The effect of gasoline percentage on the evaporation in the fuel spray was evaluated.
Journal Article

Highly Turbocharged Gasoline Engine and Rapid Compression Machine Studies of Super-Knock

2016-04-05
2016-01-0686
Super-knock has been a significant obstacle for the development of highly turbocharged (downsized) gasoline engines with spark ignition, due to the catastrophic damage super-knock can cause to the engine. According to previous research by the authors, one combustion process leading to super-knock may be described as hot-spot induced pre-ignition followed by deflagration which can induce detonation from another hot spot followed by high pressure oscillation. The sources of the hot spots which lead to pre-ignition (including oil films, deposits, gas-dynamics, etc.) may occur sporadically, which leads to super-knock occurring randomly at practical engine operating conditions. In this study, a spark plasma was used to induce preignition and the correlation between super-knock combustion and the thermodynamic state of the reactant mixture was investigated in a four-cylinder production gasoline engine.
Technical Paper

Mode Switch of SI-HCCI Combustion on a GDI Engine

2007-04-16
2007-01-0195
Multi-mode combustion is an ideal combustion strategy to utilize HCCI for internal combustion engines. It combines HCCI combustion mode for low-middle load and traditional SI mode for high load and high speed. By changing the cam profiles from normal overlap for SI mode to the negative valve overlap (NVO) for HCCI mode, as well as the adjustment of direct injection strategy, the combustion mode transition between SI and HCCI was realized in one engine cycle. By two-step cam switch, the throttle action is separated from the cam action, which ensures the stabilization of mode transition. For validating the feasibility of the stepped switch, the influence of throttle position on HCCI combustion was carefully studied. Based on the research, the combustion mode switch was realized in one engine cycle; the whole switch process including throttle action was realized in 10 cycles. The entire process was smooth, rapid and reliable without any abnormal combustion such as knocking and misfiring.
Technical Paper

Research on Steady and Transient Performance of an HCCI Engine with Gasoline Direct Injection

2008-06-23
2008-01-1723
In this paper, a hybrid combustion mode in four-stroke gasoline direct injection engines was studied. Switching cam profiles and injection strategies simultaneously was adopted to obtain a rapid and smooth switch between SI mode and HCCI mode. Based on the continuous pressure traces and corresponding emissions, HCCI steady operation, HCCI transient process (combustion phase adjustment, SI-HCCI, HCCI-SI, HCCI cold start) were studied. In HCCI mode, HCCI combustion phase can be adjusted rapidly by changing the split injection ratio. The HCCI control strategies had been demonstrated in a Chery GDI2.0 engine. The HCCI engine simulation results show that, oxygen and active radicals are stored due to negative valve overlap and split fuel injection under learn burn condition. This reduces the HCCI sensitivity on inlet boundary conditions, such as intake charge and intake temperature. The engine can be run from 1500rpm to 4000rpm in HCCI mode without spark ignition.
Technical Paper

Multi-dimensional Simulation of HCCI Engine Using Parallel Computation and Chemical Kinetics

2008-04-14
2008-01-0966
This study improved the computational efficiency significantly using parallel computation and reduced mechanisms. A 3-dimensional engine moving mesh of intake port, exhaust port and combustion chamber was established for HCCI engine cycle simulation. To achieve a more accurate analysis, chemical kinetics was implemented into the CFD code to study the intake, spray, ignition, combustion, and pollution formation process in HCCI engine. The simulations were run on a cluster of 16-CPU, parallelized by Message-Passing Interface (MPI) mode. The cases with detailed and reduced reaction mechanisms were calculated using 1, 2, 4, 8, 16 CPUs respectively and the corresponding computational time and speed-up were discussed. Using MPI 8-CPU with reduced mechanism (less than 40 species) is the optimal scheme for CFD/Chemistry calculation of typical HCCI engine.
Technical Paper

Design and Optimization of Multi-component Fuel for Fuel Concentration Measurement by Using Tracer PLIF in SI Engine

2010-04-12
2010-01-0344
A method to design a feasible multi-component fuel for fuel concentration measurements by using PLIF was developed based on thermal gravity (TG) analysis and vapor-liquid equilibrium (VLE) calculations. Acetone, toluene, and 1,2,4-trimethylbenzene were respectively chosen as tracers for the light, medium, and heavy components of gasoline. A five-component test fuel was designed for LIF measurement, which contains n -pentane (light), isooctane, n -octane (medium), n -nonane and n -decane (heavy). The TG analysis and VLE calculation were used to ensure that the fuel had volatility similar to real gasoline and that all the tracers had a good coevaporation ratio. The fully optimized results of the six-component fuel and the disadvantages of this case are discussed. The results indicated that optimization based on the six-component fuel, which included C4 compounds such as n -butane, controlled acetone's coevaporation ratio.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Homogeneous Charge Combustion and Emissions of Ethanol Ignited by Pilot Diesel on Diesel Engines

2004-03-08
2004-01-0094
Homogeneous charge combustion and emissions of ethanol ignited by pilot diesel fuel were investigated on a two-cylinder diesel engine. The results show that emissions depend on loads and ethanol volume fraction. At low loads, ethanol has little effects on smoke. With the increase of ethanol, NOx decreases, but CO emissions increase. At high loads, smoke emissions reduce greatly with increasing ethanol, but NOx and total hydrocarbon (THC) emissions increase. With the increase of ethanol, ignition delays, combustion duration shortens. The maximum rates of heat release for the fuel containing 10 vol% ethanol (E10) and 30 vol% ethanol (E30) increase. Brake specific energy consumption (BSEC) of E10 and E30 is improved slightly only at full loads. Compared to smoke emissions obtained on the same engine using ethanol blended diesel fuels, the tendency of smoke reduction is similar to that of homogeneous charge combustion of ethanol at the same operating conditions.
Technical Paper

Numerical Simulation of HCCI Engine With Multi-Stage Gasoline Direct Injection Using 3D-CFD With Detailed Chemistry

2004-03-08
2004-01-0563
In this paper, the detailed chemical kinetics was implemented into the three-dimensional CFD code to study the combustion process in HCCI engines. An extended hydrocarbon oxidation reaction mechanism (89 species, 413 reactions) used for high octane fuel was constructed and then used to simulate the chemical process of the ignition, combustion and pollutant formation in HCCI conditions. The three-dimensional CFD / chemistry model (FIRE/CHEMKIN) was validated using the experimental data from a Rapid Compression Machine. The simulation results show good agreements with experiments. Finally, the improved multi-dimensional CFD code has been employed to simulate the intake, spray, combustion and pollution formation process of the gasoline direct injection HCCI engine with multi-stage injection strategy. The models account for intake flow structure, spray atomization, spray/wall interaction, droplet evaporation and gas phase chemistry in complex multi-dimensional geometries.
Technical Paper

PIV Measurement and Numerical Simulation of Flows in Automotive Catalytic Converters

2001-09-24
2001-01-3494
In this paper a Particle Image Velocimetry (PIV) was used to measure flow velocity fields in different inlet cones under different mass flux conditions on a steady state flow rig. Meanwhile, a mathematical model of the flow in catalytic converters was established and simulated using CFD code. Validation of the model shows that simulation results have a good agreement with experiments, which means that the established model is feasible and can be applied to predict the flow characteristics in catalytic converters with different inlet cone configurations. Experimental and computational results indicate that the inlet cone configuration significantly affects flow distribution. For a conventional inlet cone, the cone angle is one of the key factors to affect flow characteristics and should be kept as small as possible in a design. An enhanced inlet cone can greatly improve flow uniformity in catalytic converters.
Technical Paper

Experiment and Numerical Simulation of Unsteady Temperature Fields in Automotive Catalytic Converters

2001-09-24
2001-01-3563
This paper measured unsteady temperature fields of uncoated-monolith and catalytic monolith under real engine operating conditions using thermocouples. A multi-dimensional flow mathematical model of the turbulence, heat and mass transfer, and chemical reactions in monoliths was established using a computational fluid dynamics (CFD) code and numerically solved in the whole flow field of the catalytic converter. The purpose of this paper is to study unsteady warm-up characteristics of the monoliths and to investigate effects of inlet cone structure on temperature distribution of the catalytic converter. Experimental results show that the warm-up behaviors between uncoated-monolith and catalytic monolith are quite different. Simulation results indicate that the established model can qualitatively predict the warm-up characteristics.
X