Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Effect of Various Dynamic, Thermodynamic and Design Parameters on the Performance of a Turbocharged Diesel Engine Operating under Transient Load Conditions

2004-03-08
2004-01-0926
Thermodynamic, dynamic and design parameters have a significant and often conflicting impact on the transient response of a compression ignition engine. Knowing the contribution of each parameter on transient operation could direct the designer to the appropriate measures for better engine performance. To this aim an explicit simulation program developed is used to study the performance of a turbocharged diesel engine operating under transient load conditions. The simulation developed, based on the filling and emptying approach, provides various innovations as follows: Detailed analysis of thermodynamic and dynamic differential equations, on a degree crank angle basis, accounting for the continuously changing nature of transient operation, analysis of transient mechanical friction, and also a detailed mathematical simulation of the fuel pump. Each equation in the model is solved separately for every cylinder of the 6-cylinder diesel engine considered.
Technical Paper

A Simulation Analysis of the Effect of Governor Technical Characteristics and Type on the Transient Performance of a Naturally Aspirated IDI Diesel Engine

1997-02-24
970633
A transient analysis simulation program is developed for studying the response of an indirect injection, naturally aspirated, diesel engine after a rapid increase in load when this is equipped with various types of indirect acting governors. Analytical expressions are presented for the better simulation of engine mechanical friction, inertia moments and heat loss to the walls under transient conditions, governor dynamics for both the sensing element and the servopiston, soot emissions and the fuel pump operation. Various types of governor sensing elements (i.e. mechanical, electrical, two-pulse) and feedbacks (i.e. unity and vanishing) for the servomechanism are studied. Explicit diagrams are given to show how each combination of governor type and technical parameters (i.e. mass and number of flyweights, geometrical dimensions, amplification factors) affects the speed response as well as the speed droop and the recovery period of the particular engine.
Technical Paper

An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions

1997-02-24
970634
A comprehensive transient analysis simulation model is used for the calculation of diesel engine performance under variable speed and load conditions. The analysis includes a detailed description of engine subsystems under transient conditions, thus accounting for the continuously changing character of transient operation, simulating among others the fuel injection, transient mechanical friction, heat losses to the walls and governor operation. The results of engine performance, at every time step during the transient event, are used as inputs for the formulation of thermal boundary conditions, which are needed for the calculation in a parallel way of the thermal transients propagating inside the engine structure.
Technical Paper

Review of Thermodynamic Diesel Engine Simulations under Transient Operating Conditions

2006-04-03
2006-01-0884
Study and modeling of transient operation is an important scientific objective. This is due to the fact that the majority of daily vehicle driving conditions involve transient operation, with non-linear situations experienced during engine transients. Thus, proper interconnection is needed between engine, governor, fuel pump, turbocharger and load. This paper surveys the publications available in the open literature concerning diesel engine simulations under transient operating conditions. Only those models that include both full engine thermodynamic calculations and dynamic powertrain modeling are taken into account, excluding those that focus on control design and optimization. Most of the attention is concentrated to the simulations that follow the filling and emptying modeling approach. A historical overview is given covering, in more detail, research groups with continuous and consistent study of transient operation.
Technical Paper

Second-Law Analysis of Indirect Injection Turbocharged Diesel Engine Operation under Steady-State and Transient Conditions

2005-04-11
2005-01-1131
A second-law analysis is performed in both chambers of an indirect injection turbocharged diesel engine and the simulation program developed is used to study the second-law performance of the engine at various operating conditions, steady state and transient. The simulation developed is based on the filling and emptying approach and provides detailed analysis of thermodynamic, dynamic and second-law differential equations on a degree crank angle basis. It incorporates a detailed mathematical simulation of the fuel pump and solves each equation separately for each one of the six cylinders of the engine in hand. The model is validated against experimental data at steady state and transient conditions, obtained at the authors' laboratory. The prechamber rate and cumulative availability terms and irreversibilities are computed and depicted against the main chamber ones during the 720 degrees crank angle of an engine cycle.
X