Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Race Motorcycle Smart Wheel

2015-04-14
2015-01-1520
A wheel able to measure the generalized forces at the hub of a race motorcycle has been developed and used. The wheel has a very limited mass. It is made from magnesium with a special structure to sense the forces and provide the required level of stiffness. The wheel has been tested both indoor for preliminary approval and on the track. The three forces and the three moments acting at the hub can be measured with a resolution of 1N and 0.3Nm respectively. A specifically programmed DSP (Digital Signal Processor) embedded in the sensor allows real-time acquisition and processing of the six signals of forces/torques components. The signals are sent via Bluetooth to an onboard receiver connected to the vehicle CAN (Controller Area Network) bus. Each signal is sampled at 200Hz. The wheel can be used to derive the actual tyre characteristics or to record the loads acting at the hub.
Technical Paper

Lightweight Design and Construction of Aluminum Wheels

2016-04-05
2016-01-1575
In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
Technical Paper

Friction Coefficient on Snowy and Icy Surfaces of Pneumatic Tires Fitted with or without Anti-Skid Devices

2006-04-03
2006-01-0560
The dynamic performances respectively of a front- and a rear wheel drive car on icy and snowy surfaces has been assessed. Winter pneumatic tires, new anti-slip wheelsocks, and snow chains were tested. The three accelerations and the three angular velocities at the centre of gravity were measured, together with the angular speeds of all axles. The maximum traction force was also measured. Proper maneuvers to investigate both longitudinal and lateral vehicle dynamic behaviour have been performed and a complete analysis of the collected data is presented. The results confirmed the observation that snow chains allow always the best performances on both icy and snowy surfaces.
Technical Paper

A New Electric Powertrain for Light Trucks: Indoor Testing and Advanced Simulation

2014-04-01
2014-01-1977
A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB.
Journal Article

Accelerated Testing of Brake Hoses for Durability Assessment

2017-03-28
2017-01-0389
The durability performance of brake hoses is a crucial issue for such components. Accelerated fatigue testing of brake hoses is necessary for understanding achievable lifetime, actually computation of durability is quite cumbersome due to the many different materials the hoses are made from. Despite SAE standards are available, accelerated testing of brake hoses subject to actual torsional and bending stresses seem important to provide relevant feedback to designers. In this paper, an innovative methodology for assessing the fatigue behavior of brake hoses of road vehicles is proposed. A dynamic testbed is specifically designed and realized, able to reproduce the actual assembly conditions of the hoses fitted into a vehicle suspension. The designed testbed allows to replicate actual loading conditions on the brake hoses by simulating the vertical dynamics and steering of the suspension system together with brake pressure.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Journal Article

6-Axis Measuring Wheels for Trucks or Heavy Vehicles

2014-04-01
2014-01-0816
The measurement of the contact forces between road and tires is of fundamental importance while designing road vehicles. In this paper, the design and the employment of measuring wheels for trucks and heavy vehicles is presented. The measuring wheels have been optimized in order to obtain high stiffness and the approximately the same mass of the wheels normally employed. The proposed multicomponent measuring wheels are high- accuracy instruments for measuring the dynamic loads during handling and durability testing. The measuring wheels can replace the wheels of the truck under normal operation. Such family of wheels plays a major role in modern road vehicles development. The measuring wheel concept design is based on a patented three-spoke structure connected to the wheel rim. The spokes are instrumented by means of strain gauges and the measuring wheel is able to measure the three forces and the three moments acting at the interface between the tire and the road.
X