Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Eurocae WG-72 Activities

2012-03-16
The presentation provides an overview about the activities of Eurocae Working Group 72 (WG-72) starting with a brief synopsis of the context which suggested why such a committee should be established in 2006. It then goes into further detail about the drivers for the work of the committee, which call for the products to be delivered. It addresses some of the challenges with respect to its users. It points out that one of the lessons the committee learned was importance of the focus on the users, such that the products provide their maximum utility. Hence, the users should better be among the participants to achieve this objective. Other industries have dealt with the subject of Information System (or Cyber-Physical) Security long before this industry was forced to consider it. Consequently there are many industry standards and national or international norms, which may help to develop what is deemed needed for Civil Aviation.
Video

Start your lifelong journey with SAE International

2017-06-28
Can you become a visionary or are you born one? How does a visionary capture an opportunity and makes it a successful business? Are engineers more qualified to solve technical problems or run companies? SAE's "The Visionary's Take" addresses these and many other questions, by talking directly with those who have dared to tackle difficult engineering problems, and create real-life products out of their experience. In these short episodes, Sanjiv Singh and Lyle Chamberlain, respectively CEO and Chief Engineer from Near Earth Autonomy, talk about their experience in creating a brand-new company in the UAV world. Founded in 2011, Near Earth Autonomy brought together a group of engineers and roboticists, looking for unconventional solutions to very hard logistics problems, presenting danger to human life. The answers were developed by pushing technology to a higher level, testing quickly and often, and keeping an open mind to alternative ways of framing engineering challenges.
Video

Keynote Presentation: Racing Green Endurance: An EV Record

2012-05-16
The worldwide drive to improved energy efficiency for engine systems is being supported by several engine R&D programs at Southwest Research Institute (SwRI). This research includes large programs in major-market engine categories, such as heavy-duty, non-road, and light-duty; and includes diesel, gasoline, and alternative fuel aspects. This presentation describes several key diesel engine programs being pursued under the SwRI Clean High Efficiency Diesel Engine consortium (CHEDE-VI), whose goal is to demonstrate future diesel technology exceeding 50% brake thermal efficiency. Additionally, SwRI?s High Efficiency Dilute Gasoline Engines consortium (HEDGE-II), is reviewed, where advanced technology for ultra-high efficiency gasoline engines is being demonstrated. The HEDGE-II program is built upon dilute gasoline engine research, where brake thermal efficiencies in excess of 42% are being obtained for engines applicable to the light-duty market. Presenter Charles E.
Video

Fiber Optic Strain Sensor Standardization - International and European Activities

2012-03-16
With the increased demand for high volume, cost-effective, fiber-reinforced thermoplastic parts, the lack of high throughput systems has become more pronounced. Thermoforming as a method to generate complex shapes from a flat preform is dependable and fast. In order to use readily available, standard unidirectional impregnated thermoplastic tape in this process, a flat perform must be created prior to the thermoforming step. Formerly, creating the preform by hand layup was a time consuming and therefore costly, step. Fiberforge�?s patented RELAY� technology overcomes the challenges of handling thermoplastic prepreg tape and provides a solution through the automated creation of a flat preform, referred to as a Tailored Blank?. Producing a part for thermoforming with accurate ply orientation and scrap minimization is now as simple as loading a material spool followed by a pressing a start button. Presenter Christina McClard, Fiberforge
Video

High Volume Production of Fiber Reinforced Thermoplastic Parts

2012-03-23
Presented by: Dan Ott Web Industries Director, Business Development, Advanced Composites Market With the growth of Fiber Placement technology as a preferred automation technology in aerospace manufacturing and the rapid growth of new production line installations, it is crucial to provide material in a form which meets all necessary specifications and supports the optimum productivity available from this major capital investment made by the producer of the parts. Achieving these goals happnes when the part designer, AFP machine builder, and the slit tape producer design the best process and format which provides smooth, efficient and rapid delivery of the prepreg slit tape to the Fiber Placement laydown head. Tape size (width), slit width tolerance, spool shape and size, density of prepreg on the spool, spool change-over and handling processes all play a factor in productivity, and creating (or inhibiting) the best ROI on a full-scale AFP production line.
Video

ARAMiS - Taming Multicores for Safe Transportation

2012-05-17
Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.
Video

GetConnected. - SAE 2012 World Congress

2012-04-17
The SAE 2012 World Congress theme, Get Connected, represents the new and diverse connections that will drive significant advancements in the auto industry of tomorrow. Not only does the theme symbolize literal connections, such as those between vehicles, infrastructure, the Internet, and the nation's electrical grid, but also demonstrates the most fundamental of connections; the connections and relationships between engineers who are developing the next generation vehicle technology. From OEMs to suppliers, across academia and governments, connecting to one another and using these connections to share ideas and expertise - in both healthy competition and in partnership - will be the catalyst of forthcoming innovation and the auto industry's basis to continued future success. GetConnected: SAE 2012 World Congress April 24-26, 2012 Cobo Center, Detroit, Michigan, USA Start connecting today. Vist www.sae.org/congress for more information.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Development of a Catalytic Converter Cool-Down Model to Investigate Intermittent Engine Operation in HEVs

2018-10-29
Abstract Catalytic converters, a primary component in most automotive emissions control systems, do not function well until they are heated substantially above ambient temperature. As the primary energy for catalyst heating comes from engine exhaust gases, plug-in hybrid electric vehicles (PHEVs) that have the potential for short and infrequent use of their onboard engine may have limited energy available for catalytic converter heating. This article presents a comparison of multiple hybrid supervisory control strategies to determine the ability to avoid engine cold starts during a blended charge-depleting propulsion mode. Full vehicle and catalytic converter simulations are performed in parallel with engine dynamometer testing in order to examine catalyst temperature variations during the course of the US06 City drive cycle. Emissions and energy consumption (E&EC) calculations are also performed to determine the effective number of engine starts during the drive cycle.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Development of New TOYOTA FCHV-adv Fuel Cell System

2009-04-20
2009-01-1003
Since 1992, Toyota Motor Corporation (TMC) has been working on the development of fuel cell system technology. TMC is designing principal components in-house, including fuel cell stacks, high-pressure hydrogen storage tank systems, and hybrid systems. TMC developed the ‘02 model TOYOTA FCHV, the world-first market-ready fuel cell vehicle, and started limited lease of the vehicles in December 2002. In June 2008, TMC developed a new TOYOTA FCHV-adv which obtained vehicle type certification in Japan, and is currently available for leasing in Japan and the United States. In the development of the TOYOTA FCHV-adv, TMC has improved the cruising range and cold start/drive capability from the previous TOYOTA FCHV. The TOYOTA FCHV-adv has achieved an actual cruising range of over 500 km, which is equivalent to that of current gasoline vehicles. In addition, the TOYOTA FCHV-adv has proven starting/driving capability at -30°C temperature.
Journal Article

Effect of Injection Strategy on Cold Start Performance in an Optical Light-Duty DI Diesel Engine

2009-09-13
2009-24-0045
The present study investigates cold start at very low temperatures, down to −29 deg C. The experiments were conducted in an optical light duty diesel engine using a Swedish class 1 environmental diesel fuel. In-cylinder imaging of the natural luminescence using a high speed video camera was performed to get a better understanding of the combustion at very low temperature conditions. Combustion in cold starting conditions was found to be asymmetrically distributed in the combustion chamber. Combustion was initiated close to the glow plug first and then transported in the swirl direction to the adjacent jets. A full factorial study was performed on low temperature sensitivity for cold start. The effects of cooling down the engine by parts on stability and noise were studied. Furthermore, different injection strategies were investigated in order to overcome the limited fuel evaporation process at very low temperatures.
Journal Article

Columbus Thermal Hydraulic Operations with US Payloads

2009-07-12
2009-01-2555
After launch and activation activities, the Columbus module started its operational life on February 2008 providing resources to the internal and external experiments. In March 2008 two US Payloads were successfully installed into Columbus Module: Microgravity Sciences Glovebox (MSG) and a US payload of the Express rack family, Express Rack 3, carrying the European Modular Cultivation System (EMCS) experiment. They were delivered to the European laboratory from the US laboratory and followed few months later by similar racks; Human Research Facility 1 (HRF1) and HRF2. The following paper provides an overview of US Payloads, giving their main features and experiments run inside Columbus on year 2008. Flight issues, mainly on the hydraulic side are also discussed. Engineering evaluations released to the flight control team, telemetry data, and relevant mathematical models predictions are described providing a background material for the adopted work-around solutions.
Journal Article

Deposit Control in Modern Diesel Fuel Injection Systems

2010-10-25
2010-01-2250
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Sensor- Less Individual Cylinder Pressure Estimation and Closed Loop Control for Cold Start and Torque Balancing

2010-04-12
2010-01-1269
The current paper presents a by cylinder IMEP estimator which operates completely free of direct cylinder pressure sensor measurement and which, when coupled with associated closed loop torque controller and commonly used engine control hardware, can provide significant improvement in the reduction to fuel sensitivity over conventional systems at minimal or no cost. Applications of the by cylinder estimator and closed loop torque/IMEP control are described including the use of the estimator during cold start before the O2 sensor is active. The application of the IMEP estimator and controller to cold start can provide significantly improved idle quality as well as enhanced robustness to degraded fuel quality. Closed loop combustion strategies using spark and fuel are described and experimental data from V6 engine testing are presented for the estimator and available closed loop controllers.
Journal Article

Fabrication of Titanium Aerospace Hardware using Elevated Temperature Forming Processes

2010-09-28
2010-01-1834
Titanium is a difficult material to fabricate into complex configurations. There is several elevated temperature forming processes available to produce titanium components for aerospace applications. The processes to be discussed are Superplastic Forming (SPF), hot forming and creep forming. SPF uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Of the processes to be discussed, this is the one that can produce the most complex shapes containing the tightest radii. A variation of the process combines an SPF operation with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. Another process for shaping titanium is hot forming. In this process, matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature.
Journal Article

Combining Hybrid Electric Technology with Multi-axle Drivelines

2010-10-05
2010-01-1899
The paper presented herein, combines various aspects of hybrid electric powertrain technology with the mechanics of multi-axle drivelines. Starting with a review of why automotive engineers desire to implement electrified powertrain technology, the paper will then explore the reasons for multi-axle drivetrains and finally, will explore the benefits and challenges of combining hybrid-electric and multiaxle driveline technology.
X