Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Development of a Hybrid Control Strategy for an Advanced Parallel HEV Powertrain with Two Electrical Axles

2012-05-29
This paper proposes a current limits distribution control strategy for a parallel hybrid electric vehicle (parallel HEV) which includes an advanced powertrain concept with two electrical driving axles. One of the difficulties of an HEV powertrain with two electrical driving axles is the ability to distribute the electrical current of one high voltage battery appropriately to the two independent electrical motors. Depending on the vehicle driving condition (i.e., car maneuver) or the maximization of the entire efficiency chain of the system, a suitable control strategy is necessary. We propose an input-output feedback linearization strategy to cope with the nonlinear system subject to input constraints. This approach needs an external, state dependent saturation element, which translates the state dependent control input saturation to the new feedback linearizing input and therefore preserves the properties of the differential geometric framework.
Video

Metal Oxide Particle Emissions from Diesel and Petrol Engines

2012-06-18
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
Standard

Considerations for future more electric aircraft electric power systems

2011-05-06
WIP
AIR6198
This activity is focused on more electric and all electric type power systems for air vehicles. The scope of which includes source, distribution and user contributions to electrical power quality, failure modes, coordination, system reliabilty and robustness, impacts of being flight critical and the gaps which exist in present standards and guidance documents.
Standard

Advanced methods for Wire Selection and Sizing for Aerospace applications

2019-05-30
WIP
AIR7497
This SAE Aerospace Information Report is intended to provide advanced methods for wire selecting and sizing in aerospace application as a continuation of AIR6540, Fundamentals in Wire Selection and Sizing for Aerospace Applications. Also, it will provide valuable information for the electrical design engineer to verify the proper wire selection and validate a set of system design requirements which includes meeting environmental and installation constraints.
Standard

Aerospace Electrical Power System Stability

2018-09-10
WIP
AIR8445
EPS stability is an essential property that defines EPS ability to provide secure operation under required range of operation scenario. Power system stability is defined as “the ability of an electric power system, for a given initial operating condition, to regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables bounded so that practically the entire system remains intact”. This is applicable for AC and DC systems and has to address steady state conditions, transient conditions as well as high power loads connection / disconnection on the network.
Standard

Aircraft High Voltage DC Power Quality Standard

2019-06-05
WIP
AS7499
The need for developing this standard is driven by the quickly evolving field of electrified propulsion for aircraft. Industry is moving forward in development of a broad range of high voltage primary power systems. There is an immediate need to standardize power quality requirements for design, analysis, verification, and testing for these types of systems.
Standard

ELA Standardization

2017-07-18
WIP
ARP6505
This AIR intends to better document and tabulate electrical load dynamics that influence power source capacity, power quality and stabiltiy.
Journal Article

Analysis of Compromising Degree of an Internal Combustion Engine Using Biodiesel

2009-04-20
2009-01-0895
This work intends to present a study about the application of a standard methodology for the evaluation of the mechanical components compromise as result of the use of biodiesel, based on the lubricating oil analyses. The fuel oil that will be analyzed is produced in PUCRS' Faculty of Chemistry. As we know, the physical-chemical analysis of lubricating oils can indicate a series of parameters that allow valuing the quality and the compromising degree of the mechanical engine components. The results of these analyses will be based on tests in an Electronic Microscopy. This type of analysis will allow us to determine the quality of the lubricating oil, degradation and contamination with metal materials (mechanical compromising). The work presupposes the functioning of Diesel engine cycle with several proportions of biodiesel (B2, B5, B10, B20 and B100).
Journal Article

Field Evaluation of Biodiesel (B20) Use by Transit Buses

2009-10-06
2009-01-2899
The objective of this research project was to compare B20 (20% biodiesel fuel) and ultra-low-sulfur (ULSD) diesel-fueled buses in terms of fuel economy, vehicle maintenance, engine performance, component wear, and lube oil performance. We examined 15 model year (MY) 2002 Gillig 40-foot transit buses equipped with MY 2002 Cummins ISM engines. The engines met 2004 U.S. emission standards and employed exhaust gas recirculation (EGR). For 18 months, eight of these buses operated exclusively on B20 and seven operated exclusively on ULSD. The B20 and ULSD study groups operated from different depots of the St. Louis (Missouri) Metro, with bus routes matched for duty cycle parity. The B20- and ULSD-fueled buses exhibited comparable fuel economy, reliability (as measured by miles between road calls), and total maintenance costs. Engine and fuel system maintenance costs were also the same for the two groups after correcting for the higher average mileage of the B20 group.
Journal Article

Analysis of DPF Incombustible Materials from Volvo Trucks Using DPF-SCR-Urea With API CJ-4 and API CI-4 PLUS Oils

2009-06-15
2009-01-1781
This paper reports on a field test with 23 Volvo D12C non-exhaust gas recirculation diesel engines using the Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and urea system with Ultra-Low-Sulfur-Diesel (ULSD). This combination will be used to meet the on-highway emission standards for U.S. 2010, Japan 2010, and Europe 2013. Because of future widespread use of DPF-SCR, this study reports on our field experience with this system, and focuses on enhancing our understanding of the incombustible materials which are collected in the DPF with API CJ-4 and API CI-4 PLUS oils. The average weight of incombustibles was lower in the trucks using API CJ-4 oils at 1.0% sulfated ash, than in those using API CI-4 PLUS oils at 1.4% sulfated ash. The difference in weight between the two groups was highly significant. Further, the weight of the incombustibles per kilometer substantially decreased with each subsequent cleaning within a truck.
Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
Journal Article

Permeability Measurements of Sintered and Paper Based Friction Materials for Wet Clutches and Brakes

2010-10-25
2010-01-2229
Wet clutches are important components used in the transmission and drive trains of many modern vehicles. The clutches transfer torque via the friction between a number of friction discs and the friction characteristics is therefore of great importance for the overall behavior of the vehicles. The friction characteristics is governed by a number of parameters such as lubricant base oil and additives, type and permeability of the friction material and temperature and surface roughness of the interacting surfaces. The permeability is considered to influence time of engagement and supply the sliding interface with lubricant and additives during engagement. In this work, a permeability measurement method suitable for wet clutch friction materials is thus used to measure the permeability of friction materials of different types; sintered bronze and paper based materials.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
X