Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2012-02-15
Moir� method is useful to measure the shape and the whole-field distributions of displacement and strain of structures. There are many kinds of moir� methods such as geometric moir� method, sampling moir� method, Fourier transform moir� method, moir� interferometry, shadow moir� method and moir� topography. Grating method analyzing directly deformation of a grating without any moir� fringe pattern is considered as an extended technique of moire method. Phase analysis of the moire fringe patterns and the grating patterns provides accurate measurements of shapes or displacement and strain distributions. Some applications of these moir� methods and grating methods to dynamic shape and strain distribution measurements of a rotating tire, sub-millimeter displacement measurements from long distance for landslide prediction, real-time shape measurements with micro-meter order accuracy, etc. are shown. Presenter Yoshiharu Morimoto, Moire Institute Inc.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Battery Electric Vehicles and Extended Range Electric Vehicles, like the Chevrolet Volt, can use electrical energy from the Grid to meet the majority of a driver�s transportation needs. This has the positive societal effects of displace petroleum consumption and associated pollutants from combustion on a well to wheels basis, as well as reduced energy costs for the driver. CO2 may also be lower, but this depends upon the nature of the grid energy generation. There is a mix of sources � coal-fired, gas -fired, nuclear or renewables, like hydro, solar, wind or biomass for grid electrical energy. This mix changes by region, and also on the weather and time of day. By monitoring the grid mix and communicating it to drivers (or to their vehicles) in real-time, electrically driven vehicles may be recharged to take advantage of the lowest CO2, and potentially lower cost charging opportunities.
Video

Best Practices for In-Vehicle Network Development

2011-12-05
The number of electronically controlled systems in commercial vehicles is increasing rapidly. Much of this electrical content is controlled using ECUs (Electronic Control Units) which share information using some type of networking technology, such as a CAN bus running the SAE J1939 protocol. Presenter Jeffrey Craig, Vector CANtech Inc.
Video

The Challenges of Electrification in Premium Luxury Vehicles

2012-03-27
JLR is on track to develop stop-start, parallel hybrid and plug-in parallel hybrid vehicles in the next few years. Plug-in hybridization is arguably the most suitable technology for large, premium luxury vehicles for the foreseeable future. Range_e is a UK based demonstrator for a plug-in hybrid system and has brought into sharp focus the attribute issues and wider challenges that need to be taken into consideration when moving towards production. Presenter Paul Bostock, Jaguar Land Rover
Video

Blue Bird Propane Powered Vision School Bus

2012-04-10
Propane autogas, the world?s third most-used engine fuel, powers vehicles, transit buses, and now school buses. Blue Bird has recently launched the Next Generation Vision type C school bus, powered by a ROUSH CleanTech liquid propane autogas fuel system and a Ford 6.8L V10 engine. The bus reduces operating costs by up to 40%, greenhouse gas emissions by up to 24%, and maintains the factory horsepower, torque, and towing capacity ratings. Learn about how school districts are saving over $.30 / mile using this clean, domestically-produced fuel. Presenter Brian Carney, Roush CleanTech.
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Video

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-06-18
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Video

Development, Verification, and Validation of Penn State Extended Range Electric Vehicle

2012-06-05
The Pennsylvania State University is one of 16 North American universities that participated in the EcoCAR advanced vehicle technology competition (http://www.ecocarchallenge.org/). A series-hybrid-electric vehicle based on a General Motors crossover SUV platform has been designed, built and tested for this purpose. The powertrain features a 1.3 L turbodiesel engine running on a B20 fuel system, a 75kW generator directly coupled to the engine and advanced lithium-ion batteries. In this paper, the vehicle architecture and control strategy are detailed and performance predictions (e.g., acceleration, fuel consumption and emissions) are presented. This includes discussion of the development process that led to the selected designs. The predicted performance is compared with data obtained on a chassis dynamometer and during on-road measurements over specified drive cycles. Presenter Shawn Getty
Video

Powertrain Innovation Requires Infrastructure Innovation!

2012-04-10
Who are the people who know the most about the buses in your fleet? They are most likely the operators and the servicing technicians. They are also the key people whose knowledge, level of training and attitude can determine the success or failure of new powertrain technologies. Training and recruitment of both need to be held to a higher standard than we have seen in the past. I will argue that even the culture of those involved in fleet operations needs to be changed. The bar for technical competence and product knowledge needs to be raised for operators and technicians. In return managers should find ways to include them as stakeholders, investing them with both additional responsibility and accountability. This will require greater access to training and recognition of achievement. Where are the busses stored and serviced? Most likely in an all-purpose state/county/municipal service facility servicing a variety of equipment.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

Reduction of CO2 Emissions using Variable Compression Ratio MCE-5 VCRi Technology - Facts & Prospects

2012-05-10
Downsizing and downspeeding are two efficient strategies to reduce vehicles CO2 emission, provided that high BMEP can be achieved at any engine speed under clean, safe, stable and efficient combustion. With a 6:1 minimum compression ratio, the MCE-5 VCRi achieves 40 bar peak BMEP at 1200 rpm with no irregular combustion. If peak BMEP is maintained below 35 bar, fuel enrichment is no longer necessary. When running at part loads, the engine operates at high compression ratios (up to 15:1) to minimize BSFC and maximize the sweet spot area on the map. Next generation MCE-5 VCRi engines will combine VCR and stoichiometric charges, highly diluted with external cooled EGR, in order to improve part loads efficiency by means of both the reduction in heat and pumping losses, and the optimization of compression-expansion ratio. This strategy, added to downsizing-donwspeeding, requires high-energy ignition systems to promote repeatable, stable, rapid and complete combustion.
Video

ThrottleCharger; Fuel Economy Improvement using Throttling Work for Electric Power Generation.

2012-05-10
Ford's EcoBoost GTDI engine technology (Gasoline Direct Injection, Turbo-charging and Downsizing) is being successfully implemented in the market place with the EcoBoost option accounting for significant volumes in vehicle lines as diverse as the F150 pickup truck, Edge CUV and the Lincoln MKS luxury sedan. A logical question would be what comes after GTDI? This presentation will review some of the technologies that will be required for further improvements in CO2, efficiency and performance building on the EcoBoost foundation as well as some of the challenges inherent in the new technologies and approaches. Presenter Eric W. Curtis, Ford Motor Co.
Video

Development of High-Efficiency Rotary Engines

2012-05-10
In this presentation, we will explain how the traditional Miller Cycle - which has its limitations in the traditional four-stroke, Otto Cycle engine provides new opportunities for greater fuel efficiency gains and engine downsizing when incorporated in a split-cycle combustion process. Results will also be shared from studies showing how these implementations can provide both significant drops in fuel consumption and increases in power when incorporated into some of today's most economic vehicles. Presenter Stephen Scuderi, Scuderi Group LLC
X