Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

An Improved Near Wall Heat Transfer Model for Multidimensional Engine Flow Calculations

1990-02-01
900251
An important aspect of calculation of engine combustion chamber heat transfer with a multi-dimensional flow code is the modeling of the near wall flow. Conventional treatments of the wall layer flow employ the use of wall functions which impose the wall boundary conditions on the solution grid points adjacent to solid boundaries. However, the use of wall functions for calculating complex flows such as those which exist in engines has numerous weaknesses, including dependence on grid resolution. An alternative wall modeling approach has been developed which overcomes the limitations of the wall functions and is applicable to the calculation of in-cylinder engine flows. In this approach the wall layer flow is solved dynamically on a grid spanning a very thin boundary layer region adjacent to solid boundaries which is separate from the global grid used to solve the outer flow.
Technical Paper

An Investigation of Structural Effects of Fiber Matrix Reinforcement in Aluminum Diesel Pistons

1990-02-01
900536
Selective reinforcement of squeeze-cast aluminum pistons by fiber matrix inserts is a method of improving high temperature strength in piston zones subject to severe thermal and mechanical loads in highly loaded diesel engines. An investigation was carried out into the effects of selective fiber-matrix reinforcement on the thermal and stress state of an aluminum piston for a heavy-duty truck diesel engine application. Specifically, effects of geometry of the reinforced zone (fiber matrix), fiber density in the matrix, fiber orientation and piston combustion bowl shape were sought. Thermal and structural finite element analysis of the configurations were carried out. Thermal analyses were fully coupled to a simulation of a highly rated heavy-duty diesel.
Technical Paper

Warmup Characteristics of a Spark Ignition Engine as a Function of Speed and Load

1990-02-01
900683
The warmup characteristics of an engine have an important impact on a variety of design issues such as performance, emissions and durability. A computer simulation has been developed which permits a detailed transient simulation of the engine warmup period from initial ambient conditions to a fully warmed up state. The simulation combines a detailed crankangle-by-crankangle calculation of in-cylinder processes and of engine air flow, with finite element heat conduction calculations of heat transfer from the gases, through the structure to the coolant. The paper describes one particular application of the simulation to the warmup of a 2.5ℓ spark ignited engine from cold start to a fully warmed up state at several speeds ranging from 1600 to 5200 rpm and loads ranging from 25% to 100% at each speed. The response of structure temperatures, charge temperature at IVC and of the exhaust temperature has been calculated and is documented in terms of characteristic warmup times.
Technical Paper

Application of Particle Swarm Optimization for Diesel Engine Performance Optimization

2010-04-12
2010-01-1258
A particle swarm optimization (PSO) algorithm was implemented with engine testing in order to accelerate the engine development process. The PSO algorithm is a stochastic, population-based evolutionary optimization algorithm. In this study, PSO was used to reduce exhaust emissions while maintaining high fuel efficiency. A merit function was defined to help reduce multiple emissions simultaneously. Engine operations using both single-injection and double-injection strategies were optimized. The present PSO algorithm was found to be very effective in finding the favorable operating conditions for low emissions. The optimization usually took 40-70 experimental runs to find the most favorable operating conditions under the constraints specified in the present testing. High EGR levels, small pilot amount, and late main injection were suggested by the PSO. Multiple emissions were reduced simultaneously without a compromise in the brake specific fuel consumption.
Technical Paper

Coupled 1-D/3-D Analysis of Fuel Injection and Diesel Engine Combustion

2004-03-08
2004-01-0928
One of the most critical elements in diesel engine design is the selection and matching of the fuel injection system. The injection largely controls the combustion process, and with it also a wide range of related issues, such as: fuel efficiency, emissions, startability, load acceptance (acceleration) and combustion noise. Simulation has been a valuable tool for the engine design engineer to predict and optimize key parameters of the fuel injection system. This is a problem that spans a number of subsystems. Historically, simulations of these subsystems (hydraulics, gas dynamics, engine performance and 3-D CFD cylinder modeling) have typically been done in isolation. Recently, a simulation tool has been developed, which models the different subsystems in an integrated manner. This simulation tool combines a 1-D simulation tool for modeling of hydraulic and gas dynamics systems, with 3-D CFD code for modeling the in-cylinder combustion and emissions.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

A Computational Study of Wall Temperature Effects on Engine Heat Transfer

1991-01-25
910459
Recently, several theories have been offered as possible explanations for claimed increases in diesel engine heat transfer when combustion chamber surface temperatures are raised through insulation. A multi-dimensional computational fluid dynamics (CFD) analysis, using a recently developed near wall turbulent heat transfer model, has been employed to investigate the validity of two of these theories. The proposed mechanisms for increased heat transfer in the presence of high wall temperatures are: 1 piston-induced compression heating of the near wall gas which increases the near wall temperature gradient when wall temperatures are high; 2 increased penetration of hot, burned gases into the near wall flow during combustion through reduction of the flame quench distance.
Technical Paper

A New Generation of Tools for Accurate Thermo-Mechanical Finite Element Analyses of Engine Components

1992-02-01
920681
A set of methods is described to calculate boundary conditions for thermal and mechanical finite element (FE) analyses and to assess and present the results of those analyses in a clear and understandable way. The approach utilizes a combination of engine simulation programs and an empirical database of engine measurements developed over many years. The methodology relies on the use of specialized FE pre- and post-processors dedicated to the analyses of engine components. Gas-side thermal boundary conditions for combustion chamber components are calculated using an engine simulation code for standalone FE analyses or for FE analyses directly coupled to the engine simulation code itself. Coolant side boundary conditions are calculated using multidimensional flow analysis (computational fluid dynamics). Boundary conditions in intake and exhaust manifolds are calculated using a one-dimensional gas dynamics code.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
Technical Paper

In-Cylinder Diesel Flame Imaging Compared with Numerical Computations

1995-02-01
950455
An image acquisition-and-processing camera system was developed for in-cylinder diagnostics of a single-cylinder heavy duty diesel engine. The engine was equipped with an electronically-controlled common-rail fuel injection system that allowed both single and split (multiple) injections to be studied. The imaging system uses an endoscope to acquire luminous flame images from the combustion chamber and ensures minimum modification to the engine geometry. The system also includes an optical linkage, an image intensifier, a CID camera, a frame grabber, control circuitry and a computer. Experiments include both single and split injection cases at 90 MPa and 45 MPa injection pressures at 3/4 load and 1600 rev/min with simulated turbocharging. For the single injection at high injection pressure (90 MPa) the results show that the first luminous emissions from the ignition zone occur very close to the injector exit followed by rapid luminous flame spreading.
Technical Paper

The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation

1995-02-01
950278
An integrated numerical model has been developed for diesel engine computations based on the KIVA-II code. The model incorporates a modified RNG k-ε, turbulence model, a ‘wave’ breakup spray model, the Shell ignition model, the laminar-and-turbulent characteristic-time combustion model, a crevice flow model, a spray/wall impingement model that includes rebounding and breaking-up drops, and other improved submodels in the KIVA code. The model was validated and applied to model successfully different types of diesel engines under various operating conditions. These engines include a Caterpillar engine with different injection pressures at different injection timings, a small Tacom engine at different loads, and a Cummins engine modified by Sandia for optical experiments. Good levels of agreement in cylinder pressures and heat release rate data were obtained using the same computer model for all engine cases.
Technical Paper

A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-in-Piston Combustion Chambers

1985-02-01
850204
A new model for corrective in-cylinder heat transfer has been developed which calculates heat transfer coefficients based on a description of the in-cylinder flow field. The combustion chamber volume is divided into three regions in which differential equations for angular momentum, turbulent kinetic energy and turbulent dissipation are solved. The resultant heat transfer coefficients are strongly spatially non-uniform, unlike those calculated from standard correlations, which assume spatial uniformity. When spatially averaged, the heat transfer coefficient is much more peaked near TDC of the compression stroke as compared to that predicted by standard correlations. This is due to the model's dependence on gas velocity and turbulence, both of which are amplified near TDC. The new model allows a more accurate calculation of the spatial distribution of the heat fluxes. This capability is essential for calculation of heat transfer and of component thermal loading and temperatures.
Technical Paper

Cyclical Thermal Phenomena in Engine Combustion Chamber Surfaces

1985-02-25
850360
The heat flux from the gases to the walls of I.C. engines is highly transient, producing temperature transients in thin layers of the walls adjacent to the combustion chamber. The resulting surface temperature swings affect engine performance, and also increase the maximum temperature of the engine components. To analyze these effects, a one-dimensional, time-dependent heat conduction model was developed, with the capability to handle layered or laminated walls and temperature-dependent material properties. The model is driven by a thermodynamic cycle code coupled to a steady-state heat conduction model of the engine structure. A parametric study was carried out in which boundary conditions representing a heavy duty diesel engine were applied to materials with a wide range of thermal properties.
Technical Paper

Effect of Insulation Strategy and Design Parameters on Diesel Engine Heat Rejection and Performance

1985-02-25
850506
An analysis was made of the effect of insulation strategy on diesel engine heat transfer, performance and structure temperatures. The analysis was made using a thermodynamic cycle code with a new heat transfer correlation which takes into account the gas velocity and turbulent intensity and provides a spatially and time resolved description of the heat transfer process. The cycle code is directly coupled to a steady state heat conduction code representing the engine structure, and a transient heat conduction code tracking wall temperature swings along the combustion chamber surfaces. The study concentrated on the effects of different insulation strategies and insulating materials placed at various locations within the combustion chamber. Among the outputs of these analyses were the thermodynamic efficiency, peak firing pressure, exhaust gas temperature, component temperatures (time-average and maximum), volumetric efficiency, major heat paths and fuel energy balance.
Technical Paper

Heat Transfer in a Cooled and an Insulated Diesel Engine

1989-02-01
890572
Detailed heat transfer measurements were made in the combustion chamber of a Cummins single cylinder NH-engine in two configurations: cooled metal and ceramic-coated. The first configuration served as the baseline for a study of the effects of insulation and wall temperature on heat transfer. The second configuration had several in-cylinder components coated with 1.25 mm (0.050″) layer of zirconia plasma spray -- in particular, piston top, head firedeck and valves. The engine was operated over a matrix of operating points at four engine speeds and several load levels at each speed. The heat flux was measured by thin film thermocouple probes. The data showed that increasing the wall temperature by insulation reduced the heat flux. This reduction was seen both in the peak heat flux value as well as in the time-averaged heat flux. These trends were seen at all of the engine operating conditions.
Technical Paper

Examination of Key Issues in Low Heat Rejection Engines

1986-03-01
860316
A comprehensive diesel engine system model, representing in detail engine heat transfer processes, has been applied to a study of insulated diesel engines. The study involved a broad design analysis matrix covering a range of engine configurations with and without inter-cooling and exhaust heat recovery devices, three operating conditions and seven heat rejection packages. The main findig of this study is that the retained heat conversion efficiency (RHCE), of the in-cylinder heat retained by insulation to piston work, is 35-40 percent; these levels of RHCE are larger than those predicted by previous models. This means that a significant part of the retained heat is converted directly to piston work rather than being merely available in the exhaust stream, from which it would be recoverable with a much lower efficiency.
Technical Paper

Heat Radiation in D.I. Diesel Engines

1986-03-01
860445
A new model for radiation heat transfer in DI diesel engines has been developed. The model calculates the heat transfer rates as a function of the instantaneous values of the radiation zone size, radiation temperature, and of the absorption coefficient of the soot-laden gas. The soot concentration levels are calculated from kinetic expressions for soot formation and burnup. The spatial distribution of the radiant heat flux along the combustion chamber walls is calculated by a zonal model. The model has been applied to a conventional heavy duty highway DI diesel engine to generate predictions over a range of engine speeds and loads. These predictions indicated a wide variation in the ratio of radiation to the total heat transfer, ranging from less than ten percent to more than thirty percent, depending on the speed and load.
Technical Paper

Experimental and Analytical Study of Heat Radiation in a Diesel Engine

1987-02-01
870571
An experimental study was conducted of the heat radiation in a single-cylinder direct injection 142 diesel engine. The engine was operated at speeds ranging from 1000 to 2100 RPM and a variety of loads. The radiation was measured using a specially designed fiber-optics probe operating on the two-color principle. The probe was located in the head at two different locations: in one location it faced the piston bowl and in the other it faced the piston crown. The data obtained from the probe was processed to deduce the apparent radiation temperature and soot volume concentration as a function of crank angle. The resultant profiles of radiation temperature and of the soot volume concentrations were compared with the predictions of a zonal heat radiation model imbedded in a detailed two-zone thermodynamic cycle code. The agreement between the model and the measurements was found to be good, both in trends and in magnitudes.
Technical Paper

Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays

1999-01-01
1999-01-0912
A phenomenological nozzle flow model has been developed and implemented in both the FIRE and KIVA-II codes to simulate the effects of the nozzle geometry on fuel injection and spray processes. The model takes account of the nozzle passage inlet configuration, flow losses and cavitation, the injection pressure and combustion chamber conditions and provides initial conditions for multidimensional spray modeling. The discharge coefficient of the injector, the effective injection velocity and the initial drop or injected liquid ‘blob’ sizes are calculated dynamically during the entire injection event. The model was coupled with the wave breakup model to simulate experiments of non-vaporizing sprays under diesel conditions. Good agreement was obtained in liquid penetration, spray angle and drop size (Sauter Mean Diameter). The integrated model was also used to model combustion in a Cummins single-cylinder optical engine with good agreement.
Technical Paper

Integrated Engine/Vehicle Simulation and Control

1999-03-01
1999-01-0907
An increasing emphasis is being placed in the vehicle development process on transient operation of engines and vehicles, and of engine/vehicle integration, because of their importance to fuel economy and emissions. Simulations play a large role in this process, complementing the more usual test-oriented hardware development process. This has fueled the development and continued evolution of advanced engine and powertrain simulation tools which can be utilized for this purpose. This paper describes a new tool developed for applications to transient engine and powertrain design and optimization. It contains a detailed engine simulation, specifically focused on transient engine processes, which includes detailed models of engine breathing (with turbocharging), combustion, emissions and thermal warm-up of components. Further, it contains a powertrain and vehicle dynamic simulation.
X