Refine Your Search

Topic

Search Results

Standard

ELECTROPLATE REQUIREMENTS FOR DECORATIVE CHROMIUM DEPOSITS ON ZINC BASE MATERIALS USED FOR EXTERIOR ORNAMENTATION

1991-06-01
HISTORICAL
J1837_199106
This SAE Standard covers the physical and performance requirements for electrodeposited copper, nickel, and chromium deposits on exterior ornamentation fabricated from die cast zinc alloys (SAE J468 alloys 903 and 925), and wrought zinc strip (ASTM B 69). This type of coating is designed to provide a high degree of corrosion resistance for automotive, truck, marine, and farm usage where a bright, decorative finish is desired.
Standard

Infrared Testing

2018-01-09
CURRENT
J359_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

INFRARED TESTING

1991-02-01
HISTORICAL
J359_199102
The scope of this SAE Information Report is to provide general information relative to the nature and use of infrared techniques for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of infrared testing and as a guide to more extensive references.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ELECTROMAGNETIC TESTING BY EDDY CURRENT METHODS

1991-03-01
HISTORICAL
J425_199103
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

NONDESTRUCTIVE TESTS

1991-02-01
HISTORICAL
J358_199102
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
X