Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Automated Vehicles: Sensors and Future Technologies (DVD)

2015-04-15
"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Automated Vehicles: Sensors and Future Technologies" (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
Book

Insight: Automated Vehicles: Converging Sensor Data (DVD)

2015-04-15
"Spotlight on Design: Insight" features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Automated driving is made possible through the data acquisition and processing of many different kinds of sensors working in unison. Sensors, cameras, radar, and lidar must work cohesively together to safely provide automated features. In the episode "Automated Vehicles: Converging Sensor Data" (8:01), engineers from IAV Automotive Engineering discuss the challenges associated with the sensor data fusion, and one of Continental North America’s technical teams demonstrate how sensors, radars, and safety systems converge to enable higher levels of automated driving.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

SAE Demo Day in Tampa - Public Perception

2018-08-14
The public sees endless reports about self-driving cars. Some are breathless, others scary. Yet outside of small tech and policy circles, few people have actually experienced this coming technology. SAE gave people the opportunity May 2018 in Tampa. Hear what they had to say after the experience.
Video

SAE Demo Day in Tampa - City and State Perspectives

2018-08-14
Dramatic changes in transportation are coming. Cities and states looking to be at the forefront and reap the benefits, need an engaged and informed citizenry. Hear how the SAE Demo Day in Tampa supported Florida's AV initiatives and can benefit states nationwide.
Video

SAE Demo Day in Tampa - Highlights

2018-08-14
In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Video

Spotlight on Design: Automated Vehicles: Sensors and Future Technologies

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Automated Vehicles: Sensors and Future Technologies” (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Collection

Autonomous Systems, 2017

2017-03-28
With a mandate in Europe for autonomous emergency braking systems, there is a development happening with radar and camera based systems to do collision mitigation. The challenges include robust object tracking, stationary object detection, reactions for false positives, etc. The developments and challenges in the collision mitigation technology are included in this collection.
Collection

Autonomous Systems, 2015

2015-04-14
With a mandate in Europe for Autonomous emergency braking systems, there is a development happening with radar and camera based systems to do collision mitigation. The challenges include robust object tracking, stationary object detection, reactions for false positives etc. The developments and challenges in the collision mitigation technology are featured in this collection.
Collection

Autonomous Systems, 2019

2019-04-02
With a mandate in Europe for autonomous emergency braking systems, there is a development happening with radar and camera based systems to do collision mitigation. The challenges include robust object tracking, stationary object detection, reactions for false positives, etc. The developments and challenges in the collision mitigation technology are included in this collection.
Standard

Data Dictionary for Quantities Used in Cyber Physical Systems (Enhanced License)

2018-06-13
HISTORICAL
AS6969_DA
Enhanced License for Data Dictionary for Quantities Used in Cyber Physical Systems (AS6969) allowing for greater usage as outlined in the terms of the Enhanced License. Terms can be reviewed prior to purchase once item is added to the cart. Data Dictionary for Quantities Used in Cyber Physical Systems (AS6969) This data dictionary provides a mathematically coherent set of definitions for quantity types used in data models for unmanned systems. In this data dictionary, a quantity is defined as a property of a phenomenon, substance, or body whose value has magnitude.
Journal Article

Fuzzy Control of Autonomous Intelligent Vehicles for Collision Avoidance Using Integrated Dynamics

2018-03-01
Abstract This study aims to take the first step in bridging the gap between vehicle dynamics systems and autonomous control strategies research. More specifically, a nested method is employed to evaluate the collision avoidance ability of autonomous vehicles in the primary design stage theoretically based on both dynamics and control parameters. An integrated model is derived from a half car mathematical model in the lateral direction, consisting of two degrees of freedom, lateral deviation and yaw angle, with a traction mathematical model in the longitudinal direction, consisting of two degrees of freedom, the longitudinal velocity and rolling velocity of the wheel. The integrated model uses a mathematical power train model to generate the torque on the wheel and connects the two systems via the magic formula tyre model to represent the tyre non-linearity during augmented longitudinal and lateral dynamic attitudes.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

Obstacle Avoidance for Self-Driving Vehicle with Reinforcement Learning

2017-09-23
Abstract Obstacle avoidance is an important function in self-driving vehicle control. When the vehicle move from any arbitrary start positions to any target positions in environment, a proper path must avoid both static obstacles and moving obstacles of arbitrary shape. There are many possible scenarios, manually tackling all possible cases will likely yield a too simplistic policy. In this paper reinforcement learning is applied to the problem to form effective strategies. There are two major challenges that make self-driving vehicle different from other robotic tasks. Firstly, in order to control the vehicle precisely, the action space must be continuous which can’t be dealt with by traditional Q-learning. Secondly, self-driving vehicle must satisfy various constraints including vehicle dynamics constraints and traffic rules constraints. Three contributions are made in this paper.
Journal Article

Application of Optimal Control Method to Path Tracking Problem of Vehicle

2019-08-26
Abstract Path tracking is an essential stage for vehicle safety control. It is more newsworthy than ever in the automotive context and especially for autonomous vehicle. The study proposes an optimal control method for path tracking problem in inverse vehicle handling dynamics. The proposed method generates an expected trajectory which guarantees minimum clearance to the prescribed path by identifying the optimal steering torque input. Based on this purpose, the path tracking problem, which is treated as an optimal control problem, is then solved by local collocation method and mesh refinement. Finally, a real vehicle test is executed to verify the rationality of the proposed model and methodology. The results show that using control variables as a mesh refinement function can capture the dramatic changes in state variables, and the efficiency improvement is more significant as the number of the grid points increases.
X