Refine Your Search

Topic

Search Results

Journal Article

Advancement of Vehicle Dynamics Control with Monitoring the Tire Rolling Environment

2010-04-12
2010-01-0108
One of the most important challenges for electronic stability control (ESC) systems is the identification and monitoring of tire rolling environment, especially actual tire-road friction parameters. The presented research considers an advanced variant of the ESC system deducing the mentioned factors based on intelligent methods as fuzzy sets. The paper includes: Overview of key issues in prototyping the algorithms of Electronic Stability Control. Case study for vehicle model. Procedures for monitoring of tire rolling environment: theoretical backgrounds, computing methods, fuzzy input and output variables, fuzzy inference systems, interface with ESC algorithm. Case study for ESC control algorithm. Examples of simulation using Hardware-in-the-Loop procedures. The proposed approach can be widely used for the next-generation of ESC devices having the close integration with Intelligent Transport Systems.
Journal Article

The Application of Control and Wheel Torque Allocation Techniques to Driving Modes for Fully Electric Vehicles

2014-04-01
2014-01-0085
The combination of continuously-acting high level controllers and control allocation techniques allows various driving modes to be made available to the driver. The driving modes modify the fundamental vehicle performance characteristics including the understeer characteristic and also enable varying emphasis to be placed on aspects such as tire slip and energy efficiency. In this study, control and wheel torque allocation techniques are used to produce three driving modes. Using simulation of an empirically validated model that incorporates the dynamics of the electric powertrains, the vehicle performance, longitudinal slip and power utilization during straight-ahead driving and cornering maneuvers under the different driving modes are compared.
Journal Article

Design and Testing of ABS for Electric Vehicles with Individually Controlled On-Board Motor Drives

2014-08-01
2014-01-9128
The paper introduces the results of the development of anti-lock brake system (ABS) for full electric vehicle with individually controlled near-wheel motors. The braking functions in the target vehicle are realized with electro-hydraulic decoupled friction brake system and electric motors operating in a braking mode. The proposed ABS controller is based on the direct slip and velocity control and includes several main blocks for computing of predictive (feedforward) and reactive (feedback) brake torque, wheel slip observer, slip target adaptation, and the algorithm of brake blending between friction brakes and electric motors. The functionality of developed ABS has been investigated on the HIL test rig for straight-line braking manoeuvres on different surfaces with variation of initial velocity. The obtained experimental results have been compared with the operation of baseline algorithm of a hydraulic ABS and have demonstrated a marked effect in braking performance.
Journal Article

Estimation of Brake Friction Coefficient for Blending Function of Base Braking Control

2017-09-17
2017-01-2520
The brake architecture of hybrid and full electric vehicle includes the distinctive function of brake blending. Known approaches draw upon the maximum energy recuperation strategy and neglect the operation mode of friction brakes. Within this framework, an efficient control of the blending functions is demanded to compensate external disturbances induced by unpredictable variations of the pad disc friction coefficient. In addition, the control demand distribution between the conventional frictional brake system and the electric motors can incur failures that compromise the frictional braking performance and safety. However, deviation of friction coefficient value given in controller from actual one can induce undesirable deterioration of brake control functions.
Journal Article

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-03-28
2017-01-1597
Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture.
Journal Article

A Novel Seamless 2-Speed Transmission System for Electric Vehicles: Principles and Simulation Results

2011-06-09
2011-37-0022
This article deals with a novel 2-speed transmission system specifically designed for electric axle applications. The design of this transmission permits seamless gearshifts and is characterized by a simple mechanical layout. The equations governing the overall system dynamics are presented in the paper. The principles of the control system for the seamless gearshifts achievable by the novel transmission prototype - currently under experimental testing at the University of Surrey and on a prototype vehicle - are analytically demonstrated and detailed through advanced simulation tools. The simulation results and sensitivity analyses for the main parameters affecting the overall system dynamics are presented and discussed.
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

An Objective Evaluation of the Comfort During the Gear Change Process

2007-04-16
2007-01-1584
This paper presents the methodology adopted by Politecnico di Torino Vehicle Dynamics Research Team to obtain objective indices for the evaluation of the comfort during the gear change process. Some test drivers and different passengers traveled on a test vehicle and assigned marks on the basis of their subjective feeling of comfort during the gearshifts. The comparison between the most significant subjective evaluations and the experimental values obtained by the instruments located on the vehicle is presented. As a consequence, some indices (based on physical parameters) to evaluate the efficiency and the comfort of the gearshift process are obtained. They are in good agreement with the subjective evaluations of the drivers and the passengers. The second part of the paper presents a driveline and vehicle model which was conceived to reproduce the phenomena experimented on the vehicle. The experimental validation of the model is presented.
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

Kinematic Discrepancy Minimization for AWD Terrain Vehicle Dynamics Control

2010-10-05
2010-01-1895
Stability of motion, turnability, mobility and fuel consumption of all-wheel drive terrain vehicles strongly depends on engine power distribution among the front and rear driving axles and then between the left and right wheels of each axle. This paper considers kinematic discrepancy, which characterizes the difference of the theoretical velocities of the front and rear wheels, as the main factor that influences power distribution among the driving axles/wheels of vehicles with positively locked front and rear axles. The paper presents a new algorithm which enables minimization of the kinematic discrepancy factor for the improvement of AWD terrain vehicle dynamics while keeping up with minimal power losses for tire slip. Three control modes associated with gear ratio control of the front and rear driving axles are derived to provide the required change in kinematic discrepancy. Computer simulation results are presented for different scenarios of terrain and road conditions.
Technical Paper

A Failsafe Strategy for a Vehicle Dynamics Control (VDC) System

2004-03-08
2004-01-0190
The paper presents a failsafe strategy conceived for a Vehicle Dynamics Control (VDC) system developed by the Vehicle Dynamics Research Team of Politecnico di Torino. The main equations used by the failsafe algorithm are presented, especially those devoted to estimate steering wheel angle, body yaw rate and lateral acceleration, each of them fundamental to correctly actuate the VDC. The estimation is based on redundancy; each formula is considered according to a weight depending on the kind of maneuver. A new recovery algorithm is presented, which does not deactivate VDC after a sensor fault, but substitutes the sensor signal with the virtually estimated value. The results obtained through simulation are satisfactory. First experimental tests carried out on a ABS/VDC test bench of the Vehicle Dynamics Research Team of Politecnico di Torino confirmed the simulation results.
Technical Paper

Braking System Components Modelling

2003-10-19
2003-01-3335
The paper deals with a method implemented to study braking systems design, modelling components' characteristics through commercial software. It summarizes the potential improvement possible by using modelling techniques in chassis systems design. The first part consisted in producing a passive braking system model. A first validation was carried out on a test bench by using components of different braking systems. Particular attention was devoted to booster modelization both in semi-stationary and dynamic conditions. The second part was callipers, roll-back and thermal phenomena modelization. Finally, it were modelled Anti-lock Braking System (ABS) and Vehicle Dynamics Control (VDC) Hydraulic Units and their integration with control strategies and with vehicle dynamics model.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

Driveline Layout Influence on Four Wheel Drive Dynamics

2004-03-08
2004-01-0860
The paper presents the research activity managed to investigate the dynamics of a 4WD vehicle equipped considering drivelines with different layout. The procedure developed required to conceive an on purpose simulator to compare performance through virtual experimentation. Drivelines mechanical main characteristics and performance increasing due to control strategy were evaluated. Preliminary road test were performed with a single driveline layout, to evaluate simulation reliability and limits. The paper presents the 4WD vehicle simulator, the main equations applied to model open, torque sensing and limited slip differentials, some preliminary road test results showing torque sensing driveline performance.
Technical Paper

Four-wheel-steering Control Strategy and its Integration with Vehicle Dynamics Control and Active Roll Control

2004-03-08
2004-01-1061
The paper presents a 4-wheel-steering (4WS) control strategy devoted to reduce the turn diameter for small longitudinal speed values and to obtain a yaw rate damping effect in dynamic manoeuvres. Moreover, the 4WS active system conceived produces compensation both for lateral wind and road irregularities. The main results obtained through a functional vehicle model are presented. 4WS was integrated with a Vehicle Dynamics Control (VDC), which was improved for turn while braking manoeuvres. The results due to integration were very good, with a reduction of both systems interventions. Finally, a VDC-4WS-Active Roll Control (ARC) integration was tried, based on only one reference body yaw rate for all the active systems. The main results obtained are presented and discussed.
Technical Paper

Active Roll Control to Increase Handling and Comfort

2003-03-03
2003-01-0962
The paper deals with the elaboration of an Active Roll Control (ARC) oriented both on comfort and handling improvement. The ARC determines hydraulically the variation of the equivalent stiffness of the anti-roll bars. The control strategies conceived were extensively validated through road tests managed on an Alfa Romeo sedan. The first part of the paper deals with comfort improvement, mainly consisting in an absence of bar effect during straight-ahead travel and in a modification of the roll characteristic of the car. To increase driver's handling feeling, it was necessary to optimise the ratio between front and rear roll stiffness. This purpose can be reached through control strategies based exclusively on lateral acceleration. Some control strategy corrections were necessary to optimise roll damping and front/rear roll stiffness balancing.
Technical Paper

Experimental Validation of a Heavy Goods Vehicle Fuel Consumption Model

2011-04-12
2011-01-1234
Over the last decade the simulation of driving cycles through longitudinal vehicle models has become an important stage in the design, analysis and selection of vehicle powertrains. This paper presents an overview of existing software packages, along with the development of a new multipurpose driving cycle simulator implemented in the Matlab/Simulink environment. In order to evaluate the performance of the simulator, a MAN TGL 12.240 multi-usage delivery vehicle was fitted with a CAN-bus data logger and used to create a series of ‘real-life’ drive cycles. These were inputted into the vehicle model and the simulated fuel mass flow-rate and engine rotational speed were compared to those experimentally obtained.
Technical Paper

Investigation of Brake Control Using Test Rig-in-the-Loop Technique

2011-09-18
2011-01-2372
Research and development tools for investigations of various facets of braking processes cover three major groups of devices: Dynamometer test rigs: assessment of performance, durability, life cycle and others; Tribometer test rigs: definition of parameters of friction and wear; Hardware-in-the-loop: estimation of functional properties of controlled braking. A combination of the listed devices allows to research complex phenomena related to braking systems. The presented work discusses a novel approach of test rig fusion, namely the combination of a brake dynamometer and hardware in the loop test rig. First investigations have been done during the operation of the anti-lock braking system (ABS) system to demonstrate the functionality of the approach.
Technical Paper

Active Control of Camber and Toe Angles to Improve Vehicle Ride Comfort

2022-03-29
2022-01-0920
This paper is part of the European OWHEEL project. It proposes a method to improve the comfort of a vehicle by adaptively controlling the Camber and Toe angles of a rear suspension. The purpose is achieved through two actuators for each wheel, one that allows to change the Camber angle and the other the Toe angle. The control action is dynamically determined based on the error between the reference angle and the actual angles. The reference angles are not fixed over time but dynamically vary during the maneuver. The references vary with the aim of maintaining a Camber angle close to zero and a Toe angle that follows the trajectory of the vehicle during the curve. This improves the contact of the tire with the road. This solution allows the control system to be used flexibly for the different types of maneuvers that the vehicle could perform. An experimentally validated sports vehicle has been used to carry out the simulations. The original rear suspension is a Trailing-arm suspension.
X