Refine Your Search

Topic

Search Results

Standard

Gas Turbine Engine Performance Presentation for Digital Computer Programs Using Fortran 77

2009-05-05
CURRENT
ARP4191D
This SAE Aerospace Recommended Paractice (ARP) provides a method for digital computer programs for gas turbine engine performance, steady-state or transient, performance to be written using the FORTRAN 77 language. When it is agreed between the program User and Supplier that a particular program shall be supplied in FORTRAN 77, it is recommended that this ARP be used in conjunction with AS681 for steady-state and transient programs. This ARP also describes how to take advantage of the FORTRAN 77 CHARACTER storage to extend the information interface between the calling program and the engine subroutine. The ARP has the same major section numbers as AS681 to facilitate its use with this document. The information given in each section of this ARP is additional to that given in AS 681.
Standard

Aircraft Propulsion System Performance Nomenclature

2022-06-21
CURRENT
AS6502
This SAE Aerospace Standard (AS) provides classical propulsion system performance parameter names for aircraft propulsion systems and their derivatives, and describes the logical framework by which new names can be constructed.
Standard

GAS TURBINE ENGINE INTERFACE TEST DATA REDUCTION COMPUTER PROGRAMS

1974-04-01
HISTORICAL
ARP1210A
Engine test data reduction programs may range from programs which are limited to calculation of external performance, e.g. thrust, fuel flow, and airflow, to those which include an analysis of component performance for consistency checks.
Standard

Gas Turbine Engine Interface Test Data Reduction Computer Programs

2013-10-25
HISTORICAL
ARP1210D
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
Standard

GAS TURBINE ENGINE INTERFACE TEST DATA REDUCTION COMPUTER PROGRAMS

1996-11-01
HISTORICAL
ARP1210C
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
Standard

Gas Turbine Engine Interface Test Data Reduction Computer Programs

2017-11-21
CURRENT
ARP1210E
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
Standard

Real-Time Modeling Methods for Gas Turbine Engine Performance

2022-01-20
CURRENT
AIR4548B
This SAE Aerospace Information Report (AIR) provides a review of real-time modeling methodologies for gas turbine engine performance. The application of real-time models and modeling methodologies are discussed. The modeling methodologies addressed in this AIR concentrate on the aerothermal portion of the gas turbine propulsion system. Characteristics of the models, the various algorithms used in them, and system integration issues are also reviewed. In addition, example cases of digital models in source code are provided for several methodologies.
Standard

Shared Memory Interface for Gas Turbine Engine Performance Programs

2023-03-23
CURRENT
ARP7998
This is an initial release of a recommended practice for an interface to supplier simulations that utilize traditional inter-process communication (IPC) methods of shared memory and semaphore communications. These IPC methods are standard practice in the computer science world and allow for communication by separate processes running on a computer without any common runtime requirements. This allows things like 32-bit applications to talk with 64-bit applications, as well as any other compiler version or runtime library dependencies being required by the calling program to interface with the called model. This also allows the calling program and the called program to be run on separate CPUs to allow parallel execution of the called program as well as multiple instances of the called program to execute all on separate processors.
Standard

GAS TURBINE ENGINE STEADY STATE PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1974-04-15
HISTORICAL
AS681C
Steady state engine performance programs discussed in this Standard will be confined to two basic performance categories: preliminary design or specification. Preliminary design programs may vary in scope, but will be representative of the defined engine performance until the engine is defined by a specification. A specification program will accurately represent the engine described by the specification and will identify the appropriate model specification. Normally, the computer program will be the primary source of performance data. Two additional categories of program are status and data reduction interface programs, which are covered by ARP 1211 and 1210 respectively.
Standard

GAS TURBINE ENGINE STEADY STATE PERFORMANCE PRESENTATION FOR DIGITAL COMPUTER PROGRAMS

1982-10-01
HISTORICAL
AS681D
Steady state engine performance programs discussed in this Standard will be confined to two basic performance categories: preliminary design or specification. Preliminary design programs may vary in scope, but will be representative of the defined engine performance until the engine is defined by a specification. A specification program will accurately represent the engine described by the specification and will identify the appropriate model specification. Normally, the computer program will be the primary source of performance data. Two additional categories of program are status and data reduction interface programs, which are covered by ARP 1211 and 1210 respectively.
Standard

Gas Turbine Engine Performance Presentation for Computer Programs

2016-06-06
HISTORICAL
AS681K
This SAE Aerospace Standard (AS) provides the method for presentation of gas turbine engine steady-state and transient performance calculated using computer programs. It also provides for the presentation of parametric gas turbine data including performance, weight, and dimensions computed by computer programs. This standard is intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. This standard is applicable to, but not limited to the following program types: data reduction, steady-state, transient, preliminary design, study, specification, status, and parametric programs.
Standard

Aircraft Propulsion System Performance Station Designation

2018-10-22
WIP
AS755G
This SAE Aerospace Standard (AS) provides a performance station designation system for aircraft propulsion systems and their derivatives. The station numbering conventions presented herein are for use in all communications concerning propulsion system performance such as computer programs, data reduction, design activities, and published documents. They are intended to facilitate calculations by the program user without unduly restricting the method of calculation used by the program supplier. The contents of this document were previously a subset of AS755E. Due to the growing complexity of station numbering schemes and an industry desire to expand nomenclature descriptions, a decision was made to separate the “station numbering” and “nomenclature” contents of AS755 into two separate documents. AS755 will continue to maintain standards for station numbering. SAE Aerospace Standard AS6502 will maintain standards for classical nomenclature moving forward.
Standard

Using Engine Test Data to Model Engine Performance

2012-11-01
HISTORICAL
AIR5509
This document defines the process steps involved in collecting and processing engine test data for use in understanding engine behavior. It describes the use of an aero-thermal cycle model for reduction and analysis of those data. The analysis process may include the calculation of modifiers to match the model to measured data, and prediction of engine performance based on that analysis
X